論文の概要: LaTeX: Language Pattern-aware Triggering Event Detection for Adverse
Experience during Pandemics
- arxiv url: http://arxiv.org/abs/2310.03941v1
- Date: Thu, 5 Oct 2023 23:09:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-10 04:06:06.328591
- Title: LaTeX: Language Pattern-aware Triggering Event Detection for Adverse
Experience during Pandemics
- Title(参考訳): LaTeX:パンデミック中の逆体験のための言語パターン対応トリガイベント検出
- Authors: Kaiqun Fu, Yangxiao Bai, Weiwei Zhang, Deepthi Kolady
- Abstract要約: 新型コロナウイルス(COVID-19)のパンデミックは、米国の様々な民族集団における社会経済的格差を強調させた。
本稿では,不足と課題の両面においてソーシャルメディアが果たす役割について考察する。
4種類の有害体験に関連する言語パターンを解析する。
- 参考スコア(独自算出の注目度): 10.292364075312667
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The COVID-19 pandemic has accentuated socioeconomic disparities across
various racial and ethnic groups in the United States. While previous studies
have utilized traditional survey methods like the Household Pulse Survey (HPS)
to elucidate these disparities, this paper explores the role of social media
platforms in both highlighting and addressing these challenges. Drawing from
real-time data sourced from Twitter, we analyzed language patterns related to
four major types of adverse experiences: loss of employment income (LI), food
scarcity (FS), housing insecurity (HI), and unmet needs for mental health
services (UM). We first formulate a sparsity optimization problem that extracts
low-level language features from social media data sources. Second, we propose
novel constraints on feature similarity exploiting prior knowledge about the
similarity of the language patterns among the adverse experiences. The proposed
problem is challenging to solve due to the non-convexity objective and
non-smoothness penalties. We develop an algorithm based on the alternating
direction method of multipliers (ADMM) framework to solve the proposed
formulation. Extensive experiments and comparisons to other models on
real-world social media and the detection of adverse experiences justify the
efficacy of our model.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、米国の様々な人種と民族の社会経済的格差を強調させた。
従来,家計パルスサーベイ(HPS)のような従来の調査手法を用いてこれらの格差を解明してきたが,本稿ではこれらの課題の強調と対処におけるソーシャルメディアプラットフォームの役割について検討する。
twitterから収集したリアルタイムデータから、雇用所得の喪失(li)、食品不足(fs)、住宅安全(hi)、精神保健サービス(um)の未熟なニーズという4つの主な有害体験に関連する言語パターンを分析した。
まず,ソーシャルメディアのデータソースから低レベル言語特徴を抽出するスパーシティ最適化問題を定式化する。
次に,先行する言語パターンの類似性に関する知識を生かした特徴類似性に関する新たな制約を提案する。
提案法は,非凸性目的および非滑らか性罰則により解決が困難である。
本稿では,乗算器の交互方向法(ADMM)に基づくアルゴリズムを開発し,提案した定式化を解く。
実世界のソーシャルメディアにおける他のモデルとの広範な実験と比較と,モデルの有効性を正当化する悪質な経験の検出。
関連論文リスト
- Assessing the Level of Toxicity Against Distinct Groups in Bangla Social Media Comments: A Comprehensive Investigation [0.0]
本研究は, トランスジェンダー, 先住民, 移民の3つの特定のグループを対象として, ベンガル語における有毒なコメントを同定することに焦点を当てた。
この方法論は、データセット、手動のアノテーションの作成と、Bangla-BERT、bangla-bert-base、distil-BERT、Bert-base-multilingual-casedといったトレーニング済みのトランスフォーマーモデルの使用を含む。
実験の結果、Bangla-BERTは代替モデルを超え、F1スコアは0.8903に達した。
論文 参考訳(メタデータ) (2024-09-25T17:48:59Z) - The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Pre-trained Language Models [78.69526166193236]
プレトレーニング言語モデル(PLM)は、社会的バイアスのような有害な情報を含むことが認識されている。
我々は,社会バイアスなどの望ましくない行動に起因する言語モデルにおいて,正確に単位(すなわちニューロン)を特定するために,sc Social Bias Neuronsを提案する。
StereoSetの以前の測定値からわかるように、我々のモデルは、低コストで言語モデリング能力を維持しながら、より高い公平性を達成する。
論文 参考訳(メタデータ) (2024-06-14T15:41:06Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
本稿では,社会的偏見を考慮した言語モデル構築のための新しい枠組みを提案する。
既存のフェアネスコレクションの制限に対処するために設計された大規模なベンチマークであるSoFaをキュレートする。
我々は、言語モデル内のバイアスが認識されるよりもニュアンスが高いことを示し、これまで認識されていたよりもより広く符号化されたバイアスの範囲を示している。
論文 参考訳(メタデータ) (2023-11-15T16:35:59Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Zero-Resource Hallucination Prevention for Large Language Models [45.4155729393135]
ハロシン化(Hallucination)とは、大規模言語モデル(LLM)が事実的に不正確な情報を生成する事例を指す。
本稿では,SELF-FAMILIARITYと呼ばれる,入力命令に含まれる概念に対するモデルの親しみ度を評価する新しい自己評価手法を提案する。
4つの異なる大言語モデルでSELF-FAMILIARITYを検証し、既存の手法と比較して一貫して優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-06T01:57:36Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fine-Tuning Llama 2 Large Language Models for Detecting Online Sexual
Predatory Chats and Abusive Texts [2.406214748890827]
本稿では,Llama 2 7B-パラメーターモデルを用いて,オンライン性的捕食チャットと虐待言語の検出手法を提案する。
我々は、異なる大きさ、不均衡度、言語(英語、ローマ・ウルドゥー語、ウルドゥー語)のデータセットを用いてLLMを微調整する。
実験結果から,提案手法は3つの異なるデータセットに対して精度よく一貫した性能を示す。
論文 参考訳(メタデータ) (2023-08-28T16:18:50Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
そこで本研究では,テキストから直接意味を抽出し,症状に関連する記述と比較する手法を提案する。
詳細な分析により,提案モデルがドメイン知識の活用,他の精神疾患への伝達,解釈可能な検出結果の提供に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-06-05T15:23:55Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Sentiment Analysis Based on Deep Learning: A Comparative Study [69.09570726777817]
世論の研究は我々に貴重な情報を提供することができる。
感情分析の効率性と正確性は、自然言語処理で直面する課題によって妨げられている。
本稿では、感情分析の問題を解決するためにディープラーニングを用いた最新の研究をレビューする。
論文 参考訳(メタデータ) (2020-06-05T16:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。