Accelerating optimization over the space of probability measures
- URL: http://arxiv.org/abs/2310.04006v4
- Date: Mon, 11 Nov 2024 01:02:49 GMT
- Title: Accelerating optimization over the space of probability measures
- Authors: Shi Chen, Qin Li, Oliver Tse, Stephen J. Wright,
- Abstract summary: We introduce a Hamiltonian-flow approach analogous to momentum-based approaches in Euclidean space.
We demonstrate that, in the continuous-time setting, algorithms based on this approach can achieve convergence rates of arbitrarily high order.
- Score: 17.32262527237843
- License:
- Abstract: The acceleration of gradient-based optimization methods is a subject of significant practical and theoretical importance, particularly within machine learning applications. While much attention has been directed towards optimizing within Euclidean space, the need to optimize over spaces of probability measures in machine learning motivates exploration of accelerated gradient methods in this context too. To this end, we introduce a Hamiltonian-flow approach analogous to momentum-based approaches in Euclidean space. We demonstrate that, in the continuous-time setting, algorithms based on this approach can achieve convergence rates of arbitrarily high order. We complement our findings with numerical examples.
Related papers
- Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
It is thought that adaptive optimization algorithms represent the key pillar behind the of the Learning field.
In this paper we introduce adaptive momentum techniques for different non-smooth objective problems.
arXiv Detail & Related papers (2021-10-16T09:47:57Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Acceleration Methods [57.202881673406324]
We first use quadratic optimization problems to introduce two key families of acceleration methods.
We discuss momentum methods in detail, starting with the seminal work of Nesterov.
We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates.
arXiv Detail & Related papers (2021-01-23T17:58:25Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Asymptotic study of stochastic adaptive algorithm in non-convex
landscape [2.1320960069210484]
This paper studies some assumption properties of adaptive algorithms widely used in optimization and machine learning.
Among them Adagrad and Rmsprop, which are involved in most of the blackbox deep learning algorithms.
arXiv Detail & Related papers (2020-12-10T12:54:45Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Average-case Acceleration Through Spectral Density Estimation [35.01931431231649]
We develop a framework for the average-case analysis of random quadratic problems.
We derive algorithms that are optimal under this analysis.
We develop explicit algorithms for the uniform, Marchenko-Pastur, and exponential distributions.
arXiv Detail & Related papers (2020-02-12T01:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.