From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying
- URL: http://arxiv.org/abs/2310.04145v2
- Date: Wed, 17 Apr 2024 15:45:11 GMT
- Title: From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying
- Authors: Biao Wu, Qiang Huang, Anthony K. H. Tung,
- Abstract summary: We introduce a novel methodology to detect leaked data that are used to train classification models.
textscLDSS involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset.
This enables the effective identification of models trained on leaked data through model querying alone.
- Score: 10.919336198760808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safeguarding the Intellectual Property (IP) of data has become critically important as machine learning applications continue to proliferate, and their success heavily relies on the quality of training data. While various mechanisms exist to secure data during storage, transmission, and consumption, fewer studies have been developed to detect whether they are already leaked for model training without authorization. This issue is particularly challenging due to the absence of information and control over the training process conducted by potential attackers. In this paper, we concentrate on the domain of tabular data and introduce a novel methodology, Local Distribution Shifting Synthesis (\textsc{LDSS}), to detect leaked data that are used to train classification models. The core concept behind \textsc{LDSS} involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset. This enables the effective identification of models trained on leaked data through model querying alone, as the synthetic data injection results in a pronounced disparity in the predictions of models trained on leaked and modified datasets. \textsc{LDSS} is \emph{model-oblivious} and hence compatible with a diverse range of classification models. We have conducted extensive experiments on seven types of classification models across five real-world datasets. The comprehensive results affirm the reliability, robustness, fidelity, security, and efficiency of \textsc{LDSS}. Extending \textsc{LDSS} to regression tasks further highlights its versatility and efficacy compared with baseline methods.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Releasing Malevolence from Benevolence: The Menace of Benign Data on Machine Unlearning [28.35038726318893]
Machine learning models trained on vast amounts of real or synthetic data often achieve outstanding predictive performance across various domains.
To address privacy concerns, machine unlearning has been proposed to erase specific data samples from models.
We introduce the Unlearning Usability Attack to distill data distribution information into a small set of benign data.
arXiv Detail & Related papers (2024-07-06T15:42:28Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
Model extraction attacks fool the target model by generating adversarial examples on a substitute model.
We propose a novel data-free model extraction method named SCME, which considers both the inter- and intra-class diversity in synthesizing fake data.
arXiv Detail & Related papers (2023-10-15T10:41:45Z) - Gradient-based Data Subversion Attack Against Binary Classifiers [9.414651358362391]
In this work, we focus on label contamination attack in which an attacker poisons the labels of data to compromise the functionality of the system.
We exploit the gradients of a differentiable convex loss function with respect to the predicted label as a warm-start and formulate different strategies to find a set of data instances to contaminate.
Our experiments show that the proposed approach outperforms the baselines and is computationally efficient.
arXiv Detail & Related papers (2021-05-31T09:04:32Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z) - Data Impressions: Mining Deep Models to Extract Samples for Data-free
Applications [26.48630545028405]
"Data Impressions" act as proxy to the training data and can be used to realize a variety of tasks.
We show the applicability of data impressions in solving several computer vision tasks.
arXiv Detail & Related papers (2021-01-15T11:37:29Z) - STAN: Synthetic Network Traffic Generation with Generative Neural Models [10.54843182184416]
This paper presents STAN (Synthetic network Traffic generation with Autoregressive Neural models), a tool to generate realistic synthetic network traffic datasets.
Our novel neural architecture captures both temporal dependencies and dependence between attributes at any given time.
We evaluate the performance of STAN in terms of the quality of data generated, by training it on both a simulated dataset and a real network traffic data set.
arXiv Detail & Related papers (2020-09-27T04:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.