Entropic Score metric: Decoupling Topology and Size in Training-free NAS
- URL: http://arxiv.org/abs/2310.04179v1
- Date: Fri, 6 Oct 2023 11:49:21 GMT
- Title: Entropic Score metric: Decoupling Topology and Size in Training-free NAS
- Authors: Niccol\`o Cavagnero, Luca Robbiano, Francesca Pistilli, Barbara
Caputo, Giuseppe Averta
- Abstract summary: This paper contributes with a novel training-free metric, named Entropic Score, to estimate model expressivity through the aggregated element-wise entropy of its activations.
A proper combination with LogSynflow, to search for model size, yields superior capability to completely design high-performance Hybrid Transformers for edge applications in less than 1 GPU hour.
- Score: 18.804303642485895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Networks design is a complex and often daunting task, particularly for
resource-constrained scenarios typical of mobile-sized models. Neural
Architecture Search is a promising approach to automate this process, but
existing competitive methods require large training time and computational
resources to generate accurate models. To overcome these limits, this paper
contributes with: i) a novel training-free metric, named Entropic Score, to
estimate model expressivity through the aggregated element-wise entropy of its
activations; ii) a cyclic search algorithm to separately yet synergistically
search model size and topology. Entropic Score shows remarkable ability in
searching for the topology of the network, and a proper combination with
LogSynflow, to search for model size, yields superior capability to completely
design high-performance Hybrid Transformers for edge applications in less than
1 GPU hour, resulting in the fastest and most accurate NAS method for ImageNet
classification.
Related papers
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
Deep operator network (DeepNet) has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications.
We introduce a random sampling technique to be adopted the training of DeepONet, aimed at improving generalization ability of the model, while significantly reducing computational time.
Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
This work introduces a method that is efficient in computationally constrained environments by examining the micro-search space of channel size.
In tackling channel-size optimization, we design an automated algorithm to extract the dependencies within different connected layers of the network.
We also introduce a novel metric that highly correlates with test accuracy and enables analysis of individual network layers.
arXiv Detail & Related papers (2021-10-13T16:17:19Z) - Efficient Model Performance Estimation via Feature Histories [27.008927077173553]
An important step in the task of neural network design is the evaluation of a model's performance.
In this work, we use the evolution history of features of a network during the early stages of training to build a proxy classifier.
We show that our method can be combined with multiple search algorithms to find better solutions to a wide range of tasks.
arXiv Detail & Related papers (2021-03-07T20:41:57Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.