論文の概要: Threat Trekker: An Approach to Cyber Threat Hunting
- arxiv url: http://arxiv.org/abs/2310.04197v1
- Date: Fri, 6 Oct 2023 12:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:02:24.854318
- Title: Threat Trekker: An Approach to Cyber Threat Hunting
- Title(参考訳): Threat Trekker:サイバー脅威追跡のアプローチ
- Authors: Ángel Casanova Bienzobas, Alfonso Sánchez-Macián,
- Abstract要約: 脅威狩りはサイバー攻撃を探索し、検出し、緩和するための積極的な方法論である。
本稿では,Threat Trekkerと呼ばれる新しい機械学習パラダイムを紹介する。
- 参考スコア(独自算出の注目度): 0.5371337604556311
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Threat hunting is a proactive methodology for exploring, detecting and mitigating cyberattacks within complex environments. As opposed to conventional detection systems, threat hunting strategies assume adversaries have infiltrated the system; as a result they proactively search out any unusual patterns or activities which might indicate intrusion attempts. Historically, this endeavour has been pursued using three investigation methodologies: (1) Hypothesis-Driven Investigations; (2) Indicator of Compromise (IOC); and (3) High-level machine learning analysis-based approaches. Therefore, this paper introduces a novel machine learning paradigm known as Threat Trekker. This proposal utilizes connectors to feed data directly into an event streaming channel for processing by the algorithm and provide feedback back into its host network. Conclusions drawn from these experiments clearly establish the efficacy of employing machine learning for classifying more subtle attacks.
- Abstract(参考訳): 脅威狩りは、複雑な環境でのサイバー攻撃を探索、検出、緩和するための積極的な方法論である。
従来の検知システムとは対照的に、脅威狩猟戦略は敵がシステムに侵入したと仮定し、侵入の試みを示す可能性のある異常なパターンや活動を積極的に探索する。
歴史的にこの取り組みは,(1)仮説駆動型調査,(2)妥協の指標(IOC),(3)ハイレベルな機械学習分析に基づくアプローチの3つの手法を用いて追求されてきた。
そこで本研究では,Threat Trekkerと呼ばれる新しい機械学習パラダイムを提案する。
この提案では,データを直接イベントストリーミングチャネルに供給し,アルゴリズムによって処理し,ホストネットワークにフィードバックを提供するコネクタを利用する。
これらの実験から得られた結論は、より微妙な攻撃を分類するために機械学習を使うことの有効性を明確に証明している。
関連論文リスト
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Multi-stage Attack Detection and Prediction Using Graph Neural Networks: An IoT Feasibility Study [2.5325901958283126]
本稿では,ロッキード・マーティン・サイバー・キル・チェーンの簡易版に触発された3段階の侵入検知システムを提案する。
提案手法は3つのモデルから構成され、それぞれが共通の特徴を持つ攻撃群を検出する。
ToN IoTデータセットを使用して、さまざまなステージで平均94%のF1スコアを達成し、ベンチマークアプローチを上回りました。
論文 参考訳(メタデータ) (2024-04-28T22:11:24Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Prepare for Trouble and Make it Double. Supervised and Unsupervised
Stacking for AnomalyBased Intrusion Detection [4.56877715768796]
メタラーニングを2層スタックの形で導入し、既知の脅威と未知の脅威の両方を検出する混合アプローチを提案する。
その結果、教師付きアルゴリズムよりもゼロデイ攻撃の検出に効果があり、主要な弱点は限定されているものの、既知の攻撃を検出するのに十分な能力を維持していることがわかった。
論文 参考訳(メタデータ) (2022-02-28T08:41:32Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - A Heterogeneous Graph Learning Model for Cyber-Attack Detection [4.559898668629277]
サイバー攻撃は、ハッカーが標的とする情報システムに侵入する悪意のある試みである。
本稿では,証明データに基づく知的サイバー攻撃検出手法を提案する。
実験の結果,提案手法は他の学習ベース検出モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T16:03:39Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Evidential Cyber Threat Hunting [4.1535961847899925]
脅威追跡プロセスを自動化するための正式なサイバー推論フレームワークについて述べる。
新しいサイバー推論手法は、3つのサブスペースにまたがる運用セマンティクスを導入する。
本枠組みの実装は,本手法が実用的であり,エビデンスに基づく多基準脅威調査の一般化に有効であることを示す。
論文 参考訳(メタデータ) (2021-04-21T02:38:29Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。