Alice Benchmarks: Connecting Real World Re-Identification with the
Synthetic
- URL: http://arxiv.org/abs/2310.04416v2
- Date: Wed, 13 Mar 2024 12:53:24 GMT
- Title: Alice Benchmarks: Connecting Real World Re-Identification with the
Synthetic
- Authors: Xiaoxiao Sun, Yue Yao, Shengjin Wang, Hongdong Li, Liang Zheng
- Abstract summary: We introduce the Alice benchmarks, large-scale datasets providing benchmarks and evaluation protocols to the research community.
Within the Alice benchmarks, two object re-ID tasks are offered: person and vehicle re-ID.
As an important feature of our real target, the clusterability of its training set is not manually guaranteed to make it closer to a real domain adaptation test scenario.
- Score: 92.02220105679713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For object re-identification (re-ID), learning from synthetic data has become
a promising strategy to cheaply acquire large-scale annotated datasets and
effective models, with few privacy concerns. Many interesting research problems
arise from this strategy, e.g., how to reduce the domain gap between synthetic
source and real-world target. To facilitate developing more new approaches in
learning from synthetic data, we introduce the Alice benchmarks, large-scale
datasets providing benchmarks as well as evaluation protocols to the research
community. Within the Alice benchmarks, two object re-ID tasks are offered:
person and vehicle re-ID. We collected and annotated two challenging real-world
target datasets: AlicePerson and AliceVehicle, captured under various
illuminations, image resolutions, etc. As an important feature of our real
target, the clusterability of its training set is not manually guaranteed to
make it closer to a real domain adaptation test scenario. Correspondingly, we
reuse existing PersonX and VehicleX as synthetic source domains. The primary
goal is to train models from synthetic data that can work effectively in the
real world. In this paper, we detail the settings of Alice benchmarks, provide
an analysis of existing commonly-used domain adaptation methods, and discuss
some interesting future directions. An online server has been set up for the
community to evaluate methods conveniently and fairly. Datasets and the online
server details are available at https://sites.google.com/view/alice-benchmarks.
Related papers
- From Synthetic to Real: Unveiling the Power of Synthetic Data for Video
Person Re-ID [15.81210364737776]
We study a new problem of cross-domain video based person re-identification (Re-ID)
We take the synthetic video dataset as the source domain for training and use the real-world videos for testing.
We are surprised to find that the synthetic data performs even better than the real data in the cross-domain setting.
arXiv Detail & Related papers (2024-02-03T10:19:21Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
Network trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data.
In this paper, we propose and evaluate novel ways for the betterment of such approaches.
We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model.
arXiv Detail & Related papers (2023-02-08T15:51:54Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3D point cloud semantic segmentation is fundamental for autonomous driving.
Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes.
This paper advances the state of the art in this research field.
arXiv Detail & Related papers (2022-07-20T09:06:07Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Less is More: Learning from Synthetic Data with Fine-grained Attributes
for Person Re-Identification [16.107661617441327]
Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance.
Recently, learning from synthetic data has attracted attention from both academia and the public eye.
We construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution.
arXiv Detail & Related papers (2021-09-22T03:12:32Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Virtual to Real adaptation of Pedestrian Detectors [9.432150710329607]
ViPeD is a new synthetically generated set of images collected with the graphical engine of the video game GTA V - Grand Theft Auto V.
We propose two different Domain Adaptation techniques suitable for the pedestrian detection task, but possibly applicable to general object detection.
Experiments show that the network trained with ViPeD can generalize over unseen real-world scenarios better than the detector trained over real-world data.
arXiv Detail & Related papers (2020-01-09T14:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.