Virtual to Real adaptation of Pedestrian Detectors
- URL: http://arxiv.org/abs/2001.03032v3
- Date: Sat, 19 Sep 2020 14:14:19 GMT
- Title: Virtual to Real adaptation of Pedestrian Detectors
- Authors: Luca Ciampi, Nicola Messina, Fabrizio Falchi, Claudio Gennaro,
Giuseppe Amato
- Abstract summary: ViPeD is a new synthetically generated set of images collected with the graphical engine of the video game GTA V - Grand Theft Auto V.
We propose two different Domain Adaptation techniques suitable for the pedestrian detection task, but possibly applicable to general object detection.
Experiments show that the network trained with ViPeD can generalize over unseen real-world scenarios better than the detector trained over real-world data.
- Score: 9.432150710329607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian detection through Computer Vision is a building block for a
multitude of applications. Recently, there was an increasing interest in
Convolutional Neural Network-based architectures for the execution of such a
task. One of these supervised networks' critical goals is to generalize the
knowledge learned during the training phase to new scenarios with different
characteristics. A suitably labeled dataset is essential to achieve this
purpose. The main problem is that manually annotating a dataset usually
requires a lot of human effort, and it is costly. To this end, we introduce
ViPeD (Virtual Pedestrian Dataset), a new synthetically generated set of images
collected with the highly photo-realistic graphical engine of the video game
GTA V - Grand Theft Auto V, where annotations are automatically acquired.
However, when training solely on the synthetic dataset, the model experiences a
Synthetic2Real Domain Shift leading to a performance drop when applied to
real-world images. To mitigate this gap, we propose two different Domain
Adaptation techniques suitable for the pedestrian detection task, but possibly
applicable to general object detection. Experiments show that the network
trained with ViPeD can generalize over unseen real-world scenarios better than
the detector trained over real-world data, exploiting the variety of our
synthetic dataset. Furthermore, we demonstrate that with our Domain Adaptation
techniques, we can reduce the Synthetic2Real Domain Shift, making closer the
two domains and obtaining a performance improvement when testing the network
over the real-world images. The code, the models, and the dataset are made
freely available at https://ciampluca.github.io/viped/
Related papers
- Alice Benchmarks: Connecting Real World Re-Identification with the
Synthetic [92.02220105679713]
We introduce the Alice benchmarks, large-scale datasets providing benchmarks and evaluation protocols to the research community.
Within the Alice benchmarks, two object re-ID tasks are offered: person and vehicle re-ID.
As an important feature of our real target, the clusterability of its training set is not manually guaranteed to make it closer to a real domain adaptation test scenario.
arXiv Detail & Related papers (2023-10-06T17:58:26Z) - ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection [2.7648976108201815]
We propose to use a Generative Adversarial Network (GAN) to close the gap between the real and synthetic data.
Our approach not only produces visually plausible samples but also does not require any labels of the real domain.
arXiv Detail & Related papers (2023-07-21T05:26:32Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
Network trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data.
In this paper, we propose and evaluate novel ways for the betterment of such approaches.
We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model.
arXiv Detail & Related papers (2023-02-08T15:51:54Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function.
Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task.
arXiv Detail & Related papers (2022-07-22T22:48:33Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Improving Deep Stereo Network Generalization with Geometric Priors [93.09496073476275]
Large datasets of diverse real-world scenes with dense ground truth are difficult to obtain.
Many algorithms rely on small real-world datasets of similar scenes or synthetic datasets.
We propose to incorporate prior knowledge of scene geometry into an end-to-end stereo network to help networks generalize better.
arXiv Detail & Related papers (2020-08-25T15:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.