Facilitating Battery Swapping Services for Freight Trucks with Spatial-Temporal Demand Prediction
- URL: http://arxiv.org/abs/2310.04440v2
- Date: Fri, 24 May 2024 02:44:43 GMT
- Title: Facilitating Battery Swapping Services for Freight Trucks with Spatial-Temporal Demand Prediction
- Authors: Linyu Liu, Zhen Dai, Shiji Song, Xiaocheng Li, Guanting Chen,
- Abstract summary: This paper investigates the potential and enhance the efficacy of battery-swapping services for heavy-duty trucks.
In particular, we find that the initial phase of implementing battery-swapping services favors mobile battery-swapping stations, but as the system matures, fixed-location stations are preferred.
- Score: 30.745797708291864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrifying heavy-duty trucks offers a substantial opportunity to curtail carbon emissions, advancing toward a carbon-neutral future. However, the inherent challenges of limited battery energy and the sheer weight of heavy-duty trucks lead to reduced mileage and prolonged charging durations. Consequently, battery-swapping services emerge as an attractive solution for these trucks. This paper employs a two-fold approach to investigate the potential and enhance the efficacy of such services. Firstly, spatial-temporal demand prediction models are adopted to predict the traffic patterns for the upcoming hours. Subsequently, the prediction guides an optimization module for efficient battery allocation and deployment. Analyzing the heavy-duty truck data on a highway network spanning over 2,500 miles, our model and analysis underscore the value of prediction/machine learning in facilitating future decision-makings. In particular, we find that the initial phase of implementing battery-swapping services favors mobile battery-swapping stations, but as the system matures, fixed-location stations are preferred.
Related papers
- Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Maximum flow-based formulation for the optimal location of electric
vehicle charging stations [2.340830801548167]
We propose a model for the assignment of EV charging demand to stations, framing it as a maximum flow problem.
We showcase our methodology for the city of Montreal, demonstrating the scalability of our approach to handle real-world scenarios.
arXiv Detail & Related papers (2023-12-10T19:49:09Z) - Online Learning Models for Vehicle Usage Prediction During COVID-19 [2.287415292857564]
This study attempts to predict the departure time and distance of the first drive each day using online machine learning models.
The online machine learning models are trained and evaluated on historical driving data collected from a fleet of BEVs during the COVID-19 pandemic.
Based on our results, the best-performing prediction models yield an aggregated mean absolute error of 2.75 hours when predicting departure time and 13.37 km when predicting trip distance.
arXiv Detail & Related papers (2022-10-28T09:09:34Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain.
Recent studies have found, at best, only marginal improvements in predictive performance from incorporating temporal information.
We propose an approach based on hypernetworks, in which a neural network learns to change its own weights in response to an input.
arXiv Detail & Related papers (2022-06-29T17:58:12Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Predicting vehicles parking behaviour in shared premises for aggregated
EV electricity demand response programs [3.448121798373834]
We propose a methodology to predict an estimation of the parking duration in shared parking premises.
We formalize the prediction problem as a supervised machine learning task to predict the duration of the parking event.
This predicted duration feeds the energy management system that will allocate the power over the duration reducing the overall peak electricity demand.
arXiv Detail & Related papers (2021-09-20T16:33:17Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - Short-term forecast of EV charging stations occupancy probability using
big data streaming analysis [0.0]
This paper presents an architecture able to deal with data streams from a charging infrastructure.
The final aim is to forecast electric charging station availability after a set amount of minutes from present time.
The streaming model performs better than a model trained only using historical data.
arXiv Detail & Related papers (2021-04-26T12:03:02Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks.
We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator) for forecasting the battery SoH.
arXiv Detail & Related papers (2021-03-30T12:19:21Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.