論文の概要: Robust Transfer Learning with Unreliable Source Data
- arxiv url: http://arxiv.org/abs/2310.04606v1
- Date: Fri, 6 Oct 2023 21:50:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 17:18:01.434029
- Title: Robust Transfer Learning with Unreliable Source Data
- Title(参考訳): 信頼できないソースデータによるロバストトランスファー学習
- Authors: Jianqing Fan, Cheng Gao, Jason M. Klusowski
- Abstract要約: 対象関数とソース回帰関数との差を測定する「あいまい度レベル」と呼ばれる新しい量を導入する。
本稿では, 簡単な伝達学習手法を提案し, この新しい量が学習の伝達可能性にどのように関係しているかを示す一般的な定理を確立する。
- 参考スコア(独自算出の注目度): 13.276850367115333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses challenges in robust transfer learning stemming from
ambiguity in Bayes classifiers and weak transferable signals between the target
and source distribution. We introduce a novel quantity called the ''ambiguity
level'' that measures the discrepancy between the target and source regression
functions, propose a simple transfer learning procedure, and establish a
general theorem that shows how this new quantity is related to the
transferability of learning in terms of risk improvements. Our proposed
''Transfer Around Boundary'' (TAB) model, with a threshold balancing the
performance of target and source data, is shown to be both efficient and
robust, improving classification while avoiding negative transfer. Moreover, we
demonstrate the effectiveness of the TAB model on non-parametric classification
and logistic regression tasks, achieving upper bounds which are optimal up to
logarithmic factors. Simulation studies lend further support to the
effectiveness of TAB. We also provide simple approaches to bound the excess
misclassification error without the need for specialized knowledge in transfer
learning.
- Abstract(参考訳): 本稿では,ベイズ分類器のあいまいさと,ターゲットとソース分布との間の弱い伝達可能信号から生じる頑健な伝達学習の課題について述べる。
本研究では,対象関数とソース回帰関数の差を計測する「曖昧度レベル」と呼ばれる新しい量を導入し,簡単な伝達学習手順を提案し,この新量とリスク改善の観点からの学習の伝達可能性との関連性を示す一般定理を定式化する。
提案したTABモデル(Transfer Around Boundary)は,ターゲットデータとソースデータのパフォーマンスのバランスを保ちながら,効率的かつ堅牢であり,負の転送を回避しながら分類を改善した。
さらに,非パラメトリック分類およびロジスティック回帰タスクにおけるタブモデルの有効性を実証し,対数係数まで最適である上限値を達成する。
シミュレーション研究はTABの有効性をさらに支援している。
また,転送学習の専門知識を必要とせず,過度な誤分類誤差を限定する簡単な手法を提案する。
関連論文リスト
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Revisiting the Robustness of the Minimum Error Entropy Criterion: A
Transfer Learning Case Study [16.07380451502911]
本稿では,非ガウス雑音に対処する最小誤差エントロピー基準のロバスト性を再考する。
本稿では,分散シフトが一般的である実生活伝達学習回帰タスクの実現可能性と有用性について検討する。
論文 参考訳(メタデータ) (2023-07-17T15:38:11Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
通信オーバーヘッドは、ディープニューラルネットワークの分散トレーニングにおいて、大きなボトルネックのひとつになっています。
本稿では,SIGNSGDの非収束問題に対処する等級化方式を提案する。
提案手法は,Fashion-MNIST, CIFAR-10, CIFAR-100データセットを用いて検証した。
論文 参考訳(メタデータ) (2023-02-19T17:42:35Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
HASTEは、ターゲットデータのより厳しいサブセットのみを用いて、ソースモデルの特定のターゲットタスクへの転送可能性を推定する新しい戦略である。
HASTEは既存の転送可能性測定値と組み合わせて信頼性を向上させることができることを示す。
複数のソースモデルアーキテクチャ、ターゲットデータセット、トランスファー学習タスクにまたがる実験結果から、HASTEの修正されたメトリクスは、一貫して、あるいは、アートトランスファービリティーメトリクスの状態と同等であることが示された。
論文 参考訳(メタデータ) (2023-01-17T14:50:18Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
本研究では,高次元量子レグレッションモデルの枠組みにおける伝達学習手法を提案する。
我々は、微妙に選択された転送可能なソースドメインに基づいて、転送学習推定器の誤差境界を確立する。
データ分割手法を採用することにより、負の転送を回避できる転送可能性検出手法を提案する。
論文 参考訳(メタデータ) (2022-11-26T14:40:19Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - Frustratingly Easy Transferability Estimation [64.42879325144439]
本稿では,TransRate という,シンプルで効率的かつ効果的な転送可能性尺度を提案する。
TransRateは、事前訓練されたモデルによって抽出された対象サンプルの特徴とそれらのラベルとの間の相互情報として、転送可能性を測定する。
10行のコードで並外れた単純さにもかかわらず、TransRateは、22の事前訓練されたモデルと16のダウンストリームタスクに対する広範囲な評価において、非常にうまく機能している。
論文 参考訳(メタデータ) (2021-06-17T10:27:52Z) - CARTL: Cooperative Adversarially-Robust Transfer Learning [22.943270371841226]
ディープラーニングでは、トランスファーラーニングの典型的な戦略は、事前訓練されたモデルの初期のレイヤを凍結し、ターゲットドメイン上の残りのレイヤを微調整することである。
本稿では,特徴距離の最小化によるモデル事前学習と,対象領域タスクに対する非拡張的微調整による事前学習により,協調的逆転変換学習(CARTL)を提案する。
論文 参考訳(メタデータ) (2021-06-12T02:29:55Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。