Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs
- URL: http://arxiv.org/abs/2310.04630v1
- Date: Sat, 7 Oct 2023 00:05:47 GMT
- Title: Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs
- Authors: Wei Peng, Tomas Bosschieter, Jiahong Ouyang, Robert Paul, Ehsan Adeli,
Qingyu Zhao, Kilian M. Pohl
- Abstract summary: We propose a new generative model, Brain Synth, to synthesize metadata-conditioned (e.g., age- and sex-specific) MRIs.
Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically accurate, with a small effect size between real and synthetic MRIs.
Our synthetic MRIs can significantly improve the training of a Convolutional Neural Network to identify accelerated aging effects.
- Score: 12.492451825171408
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative AI models hold great potential in creating synthetic brain MRIs
that advance neuroimaging studies by, for example, enriching data diversity.
However, the mainstay of AI research only focuses on optimizing the visual
quality (such as signal-to-noise ratio) of the synthetic MRIs while lacking
insights into their relevance to neuroscience. To gain these insights with
respect to T1-weighted MRIs, we first propose a new generative model,
BrainSynth, to synthesize metadata-conditioned (e.g., age- and sex-specific)
MRIs that achieve state-of-the-art visual quality. We then extend our
evaluation with a novel procedure to quantify anatomical plausibility, i.e.,
how well the synthetic MRIs capture macrostructural properties of brain
regions, and how accurately they encode the effects of age and sex. Results
indicate that more than half of the brain regions in our synthetic MRIs are
anatomically accurate, i.e., with a small effect size between real and
synthetic MRIs. Moreover, the anatomical plausibility varies across cortical
regions according to their geometric complexity. As is, our synthetic MRIs can
significantly improve the training of a Convolutional Neural Network to
identify accelerated aging effects in an independent study. These results
highlight the opportunities of using generative AI to aid neuroimaging research
and point to areas for further improvement.
Related papers
- NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping [9.423808859117122]
We introduce NeuroBOLT, i.e., Neuro-to-BOLD Transformer, to translate raw EEG data to fMRI activity signals across the brain.
Our experiments demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI signals from primary sensory, high-level cognitive areas, and deep subcortical brain regions.
arXiv Detail & Related papers (2024-10-07T02:47:55Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception.
This study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework.
The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG
arXiv Detail & Related papers (2024-07-15T03:31:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data [1.1936126505067601]
We introduce Fetal SynthSeg, a domain randomization method to segment fetal brain MRI.
Our results show that models trained solely on synthetic data outperform models trained on real data.
We extend our evaluation to 40 subjects acquired using lowfield (0.55T) MRI and reconstructed with novel SR models.
arXiv Detail & Related papers (2024-03-22T10:42:25Z) - SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People [0.49478969093606673]
Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions.
We present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step.
Results show that SynthBrainGrow can accurately capture substructures and simulate structural changes such as ventricle enlargement and cortical thinning.
arXiv Detail & Related papers (2024-02-22T20:47:40Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.