From Flat to Round: Redefining Brain Decoding with Surface-Based fMRI and Cortex Structure
- URL: http://arxiv.org/abs/2507.16389v1
- Date: Tue, 22 Jul 2025 09:34:39 GMT
- Title: From Flat to Round: Redefining Brain Decoding with Surface-Based fMRI and Cortex Structure
- Authors: Sijin Yu, Zijiao Chen, Wenxuan Wu, Shengxian Chen, Zhongliang Liu, Jingxin Nie, Xiaofen Xing, Xiangmin Xu, Xin Zhang,
- Abstract summary: Reconstructing visual stimuli from human brain activity (e.g., fMRI) bridges neuroscience and computer vision.<n>We propose a novel sphere tokenizer that explicitly models fMRI signals as spatially coherent 2D spherical data on the cortical surface.<n>We also propose integration of structural MRI (sMRI) data, enabling personalized encoding of individual anatomical variations.
- Score: 11.760848227175591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing visual stimuli from human brain activity (e.g., fMRI) bridges neuroscience and computer vision by decoding neural representations. However, existing methods often overlook critical brain structure-function relationships, flattening spatial information and neglecting individual anatomical variations. To address these issues, we propose (1) a novel sphere tokenizer that explicitly models fMRI signals as spatially coherent 2D spherical data on the cortical surface; (2) integration of structural MRI (sMRI) data, enabling personalized encoding of individual anatomical variations; and (3) a positive-sample mixup strategy for efficiently leveraging multiple fMRI scans associated with the same visual stimulus. Collectively, these innovations enhance reconstruction accuracy, biological interpretability, and generalizability across individuals. Experiments demonstrate superior reconstruction performance compared to SOTA methods, highlighting the effectiveness and interpretability of our biologically informed approach.
Related papers
- BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
We propose a new generative model, Brain Synth, to synthesize metadata-conditioned (e.g., age- and sex-specific) MRIs.
Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically accurate, with a small effect size between real and synthetic MRIs.
Our synthetic MRIs can significantly improve the training of a Convolutional Neural Network to identify accelerated aging effects.
arXiv Detail & Related papers (2023-10-07T00:05:47Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
We propose a two-stage image reconstruction model called MindDiffuser.
In Stage 1, the VQ-VAE latent representations and the CLIP text embeddings decoded from fMRI are put into Stable Diffusion.
In Stage 2, we utilize the CLIP visual feature decoded from fMRI as supervisory information, and continually adjust the two feature vectors decoded in Stage 1 through backpagation to align the structural information.
arXiv Detail & Related papers (2023-08-08T13:28:34Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.