論文の概要: Label-free Node Classification on Graphs with Large Language Models
(LLMS)
- arxiv url: http://arxiv.org/abs/2310.04668v3
- Date: Sat, 24 Feb 2024 06:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 19:07:00.665739
- Title: Label-free Node Classification on Graphs with Large Language Models
(LLMS)
- Title(参考訳): 大規模言語モデル(LLMS)を用いたグラフ上のラベルなしノード分類
- Authors: Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang
Zhang, Hui Liu, Jiliang Tang
- Abstract要約: 本研究では,Large Language Models パイプライン LLM-GNN を用いたグラフ上でのラベルなしノード分類を導入する。
制限を緩和しながら、GNNとLLMの長所を反復する。
特に、LLM-GNNは1ドル未満の大規模データセットで74.9%の精度を達成できる。
- 参考スコア(独自算出の注目度): 46.937442239949256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there have been remarkable advancements in node
classification achieved by Graph Neural Networks (GNNs). However, they
necessitate abundant high-quality labels to ensure promising performance. In
contrast, Large Language Models (LLMs) exhibit impressive zero-shot proficiency
on text-attributed graphs. Yet, they face challenges in efficiently processing
structural data and suffer from high inference costs. In light of these
observations, this work introduces a label-free node classification on graphs
with LLMs pipeline, LLM-GNN. It amalgamates the strengths of both GNNs and LLMs
while mitigating their limitations. Specifically, LLMs are leveraged to
annotate a small portion of nodes and then GNNs are trained on LLMs'
annotations to make predictions for the remaining large portion of nodes. The
implementation of LLM-GNN faces a unique challenge: how can we actively select
nodes for LLMs to annotate and consequently enhance the GNN training? How can
we leverage LLMs to obtain annotations of high quality, representativeness, and
diversity, thereby enhancing GNN performance with less cost? To tackle this
challenge, we develop an annotation quality heuristic and leverage the
confidence scores derived from LLMs to advanced node selection. Comprehensive
experimental results validate the effectiveness of LLM-GNN. In particular,
LLM-GNN can achieve an accuracy of 74.9% on a vast-scale dataset \products with
a cost less than 1 dollar.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(gnns)によるノード分類が著しく進歩している。
しかし、有望なパフォーマンスを保証するためには、豊富な高品質なラベルが必要である。
対照的に、Large Language Models (LLMs) は、テキスト分散グラフに印象的なゼロショットの習熟度を示す。
しかし、効率的な構造データ処理の課題に直面し、高い推論コストを被る。
これらの観測から, LLMsパイプラインを用いたグラフ上のラベルなしノード分類, LLM-GNNを導入する。
制限を緩和しながら、gnnとllmの両方の強みを融合させる。
特に、llmは少数のノードに注釈をつけるために利用され、gnnはllmsのアノテーションで訓練され、残りのノードの大部分が予測される。
llm-gnnの実装は、いかに積極的にllmのノードを選択してアノテートし、gnnトレーニングを強化するかという、ユニークな課題に直面している。
高品質、代表性、多様性のアノテーションを得るためにLLMをどのように活用すれば、より低コストでGNN性能を向上させることができるのか?
この課題に取り組むために,アノテーションの品質ヒューリスティックを開発し,llmから得られた信頼度スコアを高度なノード選択に活用する。
LLM-GNNの有効性を総合的に検証した。
特に、LLM-GNNは1ドル未満の大規模データセット \products において74.9%の精度を達成できる。
関連論文リスト
- Can Large Language Models Act as Ensembler for Multi-GNNs? [6.387816922598151]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なモデルとして登場した。
GNNは、リッチテキストノード属性の固有の意味理解能力に欠けており、アプリケーションにおけるその有効性を制限している。
本研究は、意味情報と構造情報を統合するための堅牢で優れたソリューションを提供することにより、テキストによるグラフアンサンブル学習を推進している。
論文 参考訳(メタデータ) (2024-10-22T08:48:52Z) - LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings [7.302176015732192]
Token Embedding-Aligned Graph Language Model (TEA-GLM) という新しいフレームワークを紹介する。
我々はGNNを事前訓練し、その表現をLLMのトークン埋め込みと整列する。
次に、GNNの表現を固定数のグラフトークン埋め込みに変換する線形プロジェクタを訓練する。
論文 参考訳(メタデータ) (2024-08-25T04:32:45Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
我々は,GNN設計プロセスの合理化とLarge Language Models(LLM)の利点を活用して,下流タスクにおけるGNNの性能向上を目指す。
我々は,LLMs-as-Consultants(LLMs-as-Consultants)という新たなパラダイムを策定し,LLMとGNNを対話的に統合する。
両グラフのノード分類におけるLOGINの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2024-05-22T18:17:20Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs [4.487720716313697]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野に革命をもたらした。
本研究では,LLMの情報検索とテキスト生成機能を活用して,ノード分類設定の下でのテキスト分散グラフ(TAG)のトポロジ構造を洗練・強化する方法について検討する。
論文 参考訳(メタデータ) (2023-11-24T07:53:48Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。