論文の概要: Beyond the Typical: Modeling Rare Plausible Patterns in Chemical Reactions by Leveraging Sequential Mixture-of-Experts
- arxiv url: http://arxiv.org/abs/2310.04674v2
- Date: Tue, 20 Aug 2024 18:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 23:15:31.697834
- Title: Beyond the Typical: Modeling Rare Plausible Patterns in Chemical Reactions by Leveraging Sequential Mixture-of-Experts
- Title(参考訳): 化学反応における希少可塑性パターンのモデリング
- Authors: Taicheng Guo, Changsheng Ma, Xiuying Chen, Bozhao Nan, Kehan Guo, Shichao Pei, Nitesh V. Chawla, Olaf Wiest, Xiangliang Zhang,
- Abstract要約: TransformerやVAEのような生成モデルは一般的に反応生成物を予測するために使用される。
反応物と電子再分配パターンのマッピング空間を分割・分散的に整理することを提案する。
- 参考スコア(独自算出の注目度): 42.9784548283531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reaction prediction, a critical task in synthetic chemistry, is to predict the outcome of a reaction based on given reactants. Generative models like Transformer and VAE have typically been employed to predict the reaction product. However, these likelihood-maximization models overlooked the inherent stochastic nature of chemical reactions, such as the multiple ways electrons can be redistributed among atoms during the reaction process. In scenarios where similar reactants could follow different electron redistribution patterns, these models typically predict the most common outcomes, neglecting less frequent but potentially crucial reaction patterns. These overlooked patterns, though rare, can lead to innovative methods for designing synthetic routes and significantly advance synthesis techniques. To break the limits of previous approaches, we propose organizing the mapping space between reactants and electron redistribution patterns in a divide-and-conquer manner. We address the reaction problem by training multiple expert models, each specializing in capturing a type of electron redistribution pattern in reaction. These experts enhance the prediction process by considering both typical and other less common electron redistribution manners. In the inference stage, a dropout strategy is applied to each expert to improve the electron redistribution diversity. The most plausible products are finally predicted through a ranking stage designed to integrate the predictions from multiple experts. Experimental results on the largest reaction prediction benchmark USPTO-MIT show the superior performance of our proposed method compared to baselines.
- Abstract(参考訳): 合成化学における重要な課題である反応予測は、与えられた反応物質に基づいて反応の結果を予測することである。
TransformerやVAEのような生成モデルは一般的に反応生成物を予測するために使用される。
しかし、これらの可能性最大化モデルは、反応過程中に電子が原子間で再分配される複数の方法のような化学反応の固有の確率的性質を見落としていた。
類似の反応物質が異なる電子再分配パターンに従う場合、これらのモデルは一般的に最も一般的な結果を予測する。
これらの見過ごされがちなパターンは、合成経路を設計し、合成技術を大幅に進歩させる革新的な方法につながる可能性がある。
従来のアプローチの限界を断ち切るために,反応物と電子再分配パターン間のマッピング空間を分割・分散的に整理する手法を提案する。
反応における電子再分配パターンの捉え方に特化して、複数の専門家モデルを訓練することで、反応問題に対処する。
これらの専門家は、一般的な電子の再分配法と、他の一般的な電子の再分配法の両方を考慮することで予測プロセスを強化する。
推論段階では、各専門家にドロップアウト戦略を適用し、電子再分配の多様性を改善する。
最も有望な製品は、最終的に複数の専門家による予測を統合するために設計されたランキングステージを通じて予測される。
最大反応予測ベンチマークUSPTO-MITの実験結果から,提案手法のベースラインよりも優れた性能を示した。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Beyond Major Product Prediction: Reproducing Reaction Mechanisms with
Machine Learning Models Trained on a Large-Scale Mechanistic Dataset [10.968137261042715]
有機反応の機械的理解は、反応の発生、不純物予測、そして原則として反応発見を促進する。
いくつかの機械学習モデルは、反応生成物を予測するタスクに対処しようとしているが、反応機構を予測するための拡張は、対応する力学データセットの欠如によって妨げられている。
実験によって報告された反応物質と生成物の中間体を専門家の反応テンプレートを用いて入力し、その結果の5,184,184個の基本ステップに基づいて機械学習モデルを訓練することにより、そのようなデータセットを構築する。
論文 参考訳(メタデータ) (2024-03-07T15:26:23Z) - AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
via Contrastive Learning [45.379791270351184]
RMechRPは、新しいディープラーニングベースの反応予測システムである。
我々は、ラジカル反応の公開データベースであるRMechDBを用いてモデルを開発し、訓練する。
本研究は,RMechRPが正確かつ解釈可能な予測に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-02T09:47:27Z) - Doubly Stochastic Graph-based Non-autoregressive Reaction Prediction [59.41636061300571]
電子再分配予測を得るために2つの二重自己アテンションマッピングを組み合わせた新しいフレームワークを提案する。
提案手法は,非自己回帰モデルの予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2023-06-05T14:15:39Z) - MARS: A Motif-based Autoregressive Model for Retrosynthesis Prediction [54.75583184356392]
本稿では,レトロシンセシス予測のための新しいエンドツーエンドグラフ生成モデルを提案する。
反応中心を逐次同定し、合成子を生成し、合成子にモチーフを加えて反応子を生成する。
ベンチマークデータセットの実験では、提案されたモデルが従来の最先端のアルゴリズムを大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2022-09-27T06:29:35Z) - Non-Autoregressive Electron Redistribution Modeling for Reaction
Prediction [26.007965383304864]
反応を1ショットで予測する非自己回帰学習パラダイムを考案する。
任意の電子フローとして反応を定式化し、新しいマルチポインター復号ネットワークで予測する。
USPTO-MITデータセットの実験により、我々の手法は最先端のトップ1の精度を確立した。
論文 参考訳(メタデータ) (2021-06-08T16:39:08Z) - Non-autoregressive electron flow generation for reaction prediction [15.98143959075733]
このような連続的な生成を回避し、非自動回帰的な反応を予測する新しいデコーダを考案する。
物理化学の洞察に基づいて、分子グラフのエッジ編集を電子フローとして表現し、並列に予測できます。
このモデルは,最先端のtop-1精度とtop-kサンプリングにおける同等の性能で,推定遅延を桁違いに低減する。
論文 参考訳(メタデータ) (2020-12-16T10:01:26Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。