論文の概要: Improving Adversarial Attacks on Latent Diffusion Model
- arxiv url: http://arxiv.org/abs/2310.04687v3
- Date: Wed, 6 Mar 2024 18:14:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 17:53:43.259688
- Title: Improving Adversarial Attacks on Latent Diffusion Model
- Title(参考訳): 潜在拡散モデルによる敵攻撃の改善
- Authors: Boyang Zheng, Chumeng Liang, Xiaoyu Wu, Yan Liu
- Abstract要約: LDM(Latent Diffusion Model)に対するアドリアック攻撃は、無許可画像上でのLDMの悪意ある微調整に対する効果的な保護である。
これらの攻撃は, LDMが予測した逆例のスコア関数に余分な誤差を与えることを示す。
本稿では,一貫したスコア関数誤差を用いた攻撃によるLCMの敵攻撃を改善することを提案する。
- 参考スコア(独自算出の注目度): 8.268827963476317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks on Latent Diffusion Model (LDM), the state-of-the-art
image generative model, have been adopted as effective protection against
malicious finetuning of LDM on unauthorized images. We show that these attacks
add an extra error to the score function of adversarial examples predicted by
LDM. LDM finetuned on these adversarial examples learns to lower the error by a
bias, from which the model is attacked and predicts the score function with
biases.
Based on the dynamics, we propose to improve the adversarial attack on LDM by
Attacking with Consistent score-function Errors (ACE). ACE unifies the pattern
of the extra error added to the predicted score function. This induces the
finetuned LDM to learn the same pattern as a bias in predicting the score
function. We then introduce a well-crafted pattern to improve the attack. Our
method outperforms state-of-the-art methods in adversarial attacks on LDM.
- Abstract(参考訳): 画像生成モデルであるLatent Diffusion Model (LDM) に対する敵対的攻撃は、無許可画像に対するLDMの悪意ある微調整に対する効果的な保護として採用されている。
これらの攻撃は, LDMが予測した逆例のスコア関数に余分な誤差を与えることを示す。
これらの逆例として微調整されたLDMは、モデルが攻撃されるバイアスによる誤差を下げることを学び、バイアスでスコア関数を予測する。
このダイナミクスに基づいて,一貫性スコア関数誤り(ACE)を用いた攻撃によるLCMの敵攻撃を改善することを提案する。
ACEは予測スコア関数に追加される余分なエラーのパターンを統一する。
これにより、微調整 LDM を誘導し、スコア関数を予測する際のバイアスと同じパターンを学習する。
次に、攻撃を改善するための巧妙なパターンを導入します。
本手法は, LDMに対する敵攻撃における最先端手法よりも優れる。
関連論文リスト
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuardは、拡散ベースの画像編集モデルによる不正な編集に対する堅牢で効果的な防御方法である。
拡散過程の初期段階をターゲットとした対向雑音を発生させる新しい目的を提案する。
また,テスト期間中の各種マスクに対するロバスト性を高めるマスク強化手法も導入した。
論文 参考訳(メタデータ) (2024-10-08T05:19:19Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think [14.583181596370386]
拡散モデルの逆例は、安全上の問題に対する解決策として広く使われている。
このことは、拡散モデルがほとんどの深層モデルのような敵攻撃に対して脆弱であると考えることを誤解させるかもしれない。
本稿では, 勾配をベースとしたホワイトボックス攻撃がLDM攻撃に有効であっても, PDM攻撃に失敗する,という新たな知見を示す。
論文 参考訳(メタデータ) (2024-04-20T08:28:43Z) - Impart: An Imperceptible and Effective Label-Specific Backdoor Attack [15.859650783567103]
我々は,攻撃者が被害者モデルにアクセスできないシナリオにおいて,Impartという新たな非知覚的なバックドア攻撃フレームワークを提案する。
具体的には、オール・ツー・オール・セッティングの攻撃能力を高めるために、まずラベル固有の攻撃を提案する。
論文 参考訳(メタデータ) (2024-03-18T07:22:56Z) - Revealing Vulnerabilities in Stable Diffusion via Targeted Attacks [41.531913152661296]
本稿では,安定拡散に対する標的対向攻撃の問題を定式化し,対向的プロンプトを生成するための枠組みを提案する。
具体的には、安定した拡散を誘導し、特定の画像を生成するための信頼性の高い逆プロンプトを構築するために、勾配に基づく埋め込み最適化を設計する。
逆方向のプロンプトを成功させた後、モデルの脆弱性を引き起こすメカニズムを明らかにする。
論文 参考訳(メタデータ) (2024-01-16T12:15:39Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z) - Diffusion Models for Imperceptible and Transferable Adversarial Attack [23.991194050494396]
本稿では,拡散モデルの生成的および識別的パワーを両立させることにより,新たな非受容的かつ伝達可能な攻撃を提案する。
提案手法であるDiffAttackは,対向攻撃場に拡散モデルを導入する最初の方法である。
論文 参考訳(メタデータ) (2023-05-14T16:02:36Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。