Zero-shot Cross-lingual Transfer without Parallel Corpus
- URL: http://arxiv.org/abs/2310.04726v1
- Date: Sat, 7 Oct 2023 07:54:22 GMT
- Title: Zero-shot Cross-lingual Transfer without Parallel Corpus
- Authors: Yuyang Zhang, Xiaofeng Han, Baojun Wang
- Abstract summary: We propose a novel approach to conduct zero-shot cross-lingual transfer with a pre-trained model.
It consists of a Bilingual Task Fitting module that applies task-related bilingual information alignment.
A self-training module generates pseudo soft and hard labels for unlabeled data and utilizes them to conduct self-training.
- Score: 6.937772043639308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, although pre-trained language models have achieved great success on
multilingual NLP (Natural Language Processing) tasks, the lack of training data
on many tasks in low-resource languages still limits their performance. One
effective way of solving that problem is to transfer knowledge from
rich-resource languages to low-resource languages. However, many previous works
on cross-lingual transfer rely heavily on the parallel corpus or translation
models, which are often difficult to obtain. We propose a novel approach to
conduct zero-shot cross-lingual transfer with a pre-trained model. It consists
of a Bilingual Task Fitting module that applies task-related bilingual
information alignment; a self-training module generates pseudo soft and hard
labels for unlabeled data and utilizes them to conduct self-training. We got
the new SOTA on different tasks without any dependencies on the parallel corpus
or translation models.
Related papers
- Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
Cross-lingual transfer is a central task in multilingual NLP.
Earlier efforts on this task use parallel corpora, bilingual dictionaries, or other annotated alignment data.
We propose a simple yet effective method, SALT, to improve the zero-shot cross-lingual transfer.
arXiv Detail & Related papers (2023-09-19T19:30:56Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Language Agnostic Multilingual Information Retrieval with Contrastive
Learning [59.26316111760971]
We present an effective method to train multilingual information retrieval systems.
We leverage parallel and non-parallel corpora to improve the pretrained multilingual language models.
Our model can work well even with a small number of parallel sentences.
arXiv Detail & Related papers (2022-10-12T23:53:50Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
We enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models.
We use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks.
We achieve impressive improvements (> 20% on goal accuracy) on the parallel MultiWoZ dataset and Multilingual WoZ dataset.
arXiv Detail & Related papers (2021-09-28T11:22:38Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better.
We propose a pre-training task named Alignment Language Model (AlignLM) which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction.
The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
arXiv Detail & Related papers (2021-06-03T10:18:43Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
We explore strategies that improve cross-lingual transfer by bringing the multilingual embeddings closer in the semantic space.
We propose two novel strategies, language adversarial training and language arbitration framework, which significantly improve the (zero-resource) cross-lingual transfer performance.
Empirically, we show that the proposed models outperform the previous zero-shot baseline on the recently introduced multilingual MLQA and TyDiQA datasets.
arXiv Detail & Related papers (2020-12-10T20:29:34Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - From English To Foreign Languages: Transferring Pre-trained Language
Models [0.12691047660244334]
Pre-trained models have demonstrated their effectiveness in many downstream natural language processing (NLP) tasks.
The availability of multilingual pre-trained models enables zero-shot transfer of NLP tasks from high resource languages to low resource ones.
We tackle the problem of transferring an existing pre-trained model from English to other languages under a limited computational budget.
arXiv Detail & Related papers (2020-02-18T00:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.