Cell Tracking-by-detection using Elliptical Bounding Boxes
- URL: http://arxiv.org/abs/2310.04895v2
- Date: Wed, 11 Oct 2023 05:59:53 GMT
- Title: Cell Tracking-by-detection using Elliptical Bounding Boxes
- Authors: Lucas N. Kirsten, Cl\'audio R. Jung
- Abstract summary: This work proposes a new approach based on the classical tracking-by-detection paradigm.
It approximates the cell shapes as oriented ellipses and then uses generic-purpose oriented object detectors to identify the cells in each frame.
Our results show that our method can achieve detection and tracking results competitively with state-of-the-art techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell detection and tracking are paramount for bio-analysis. Recent approaches
rely on the tracking-by-model evolution paradigm, which usually consists of
training end-to-end deep learning models to detect and track the cells on the
frames with promising results. However, such methods require extensive amounts
of annotated data, which is time-consuming to obtain and often requires
specialized annotators. This work proposes a new approach based on the
classical tracking-by-detection paradigm that alleviates the requirement of
annotated data. More precisely, it approximates the cell shapes as oriented
ellipses and then uses generic-purpose oriented object detectors to identify
the cells in each frame. We then rely on a global data association algorithm
that explores temporal cell similarity using probability distance metrics,
considering that the ellipses relate to two-dimensional Gaussian distributions.
Our results show that our method can achieve detection and tracking results
competitively with state-of-the-art techniques that require considerably more
extensive data annotation. Our code is available at:
https://github.com/LucasKirsten/Deep-Cell-Tracking-EBB.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
This paper proposes the novel end-to-end CAP framework to achieve efficient and stable cell tracking in one stage.
CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly.
Cap demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
We introduce a novel cell tracking algorithm named DenseTrack.
DenseTrack integrates deep learning with mathematical model-based strategies to establish correspondences between consecutive frames.
We present an eigendecomposition-based cell division detection strategy.
arXiv Detail & Related papers (2024-06-27T23:26:57Z) - Trackastra: Transformer-based cell tracking for live-cell microscopy [0.0]
Trackastra is a general purpose cell tracking approach that uses a simple transformer architecture to learn pairwise associations of cells.
We show that our tracking approach performs on par with or better than highly tuned state-of-the-art cell tracking algorithms.
arXiv Detail & Related papers (2024-05-24T16:44:22Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Graph Neural Network for Cell Tracking in Microscopy Videos [0.0]
We present a novel graph neural network (GNN) approach for cell tracking in microscopy videos.
By modeling the entire time-lapse sequence as a direct graph, we extract the entire set of cell trajectories.
We exploit a deep metric learning algorithm to extract cell feature vectors that distinguish between instances of different biological cells.
arXiv Detail & Related papers (2022-02-09T21:21:48Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Simple multi-dataset detection [83.9604523643406]
We present a simple method for training a unified detector on multiple large-scale datasets.
We show how to automatically integrate dataset-specific outputs into a common semantic taxonomy.
Our approach does not require manual taxonomy reconciliation.
arXiv Detail & Related papers (2021-02-25T18:55:58Z) - CellTrack R-CNN: A Novel End-To-End Deep Neural Network for Cell
Segmentation and Tracking in Microscopy Images [21.747994390120105]
We propose a novel approach to combine cell segmentation and cell tracking into a unified end-to-end deep learning based framework.
Our method outperforms state-of-the-art algorithms in terms of both cell segmentation and cell tracking accuracies.
arXiv Detail & Related papers (2021-02-20T15:55:40Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.