論文の概要: Intelligent Sampling Consensus for Homography Estimation in Football Videos Using Featureless Unpaired Points
- arxiv url: http://arxiv.org/abs/2310.04912v2
- Date: Sat, 08 Nov 2025 14:37:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.218788
- Title: Intelligent Sampling Consensus for Homography Estimation in Football Videos Using Featureless Unpaired Points
- Title(参考訳): 特徴不明点を用いたサッカー映像のホログラフィー推定のためのインテリジェントサンプリングコンセンサス
- Authors: George Nousias, Konstantinos Delibasis, Ilias Maglogiannis,
- Abstract要約: H-RANSACは、特徴ベクトルや明示的な点対の必要性を排除したホモグラフィー推定アルゴリズムである。
各イテレーションの終了時のポストホック基準により、さらに精度が向上する。
その結果,H-RANSACは最先端の古典的手法よりも優れていた。
- 参考スコア(独自算出の注目度): 2.1372565495068616
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating the homography matrix between images captured under radically different camera poses and zoom factors is a complex challenge. Traditional methods rely on the Random Sample Consensus (RANSAC) algorithm, which requires pairs of homologous points, pre-matched based on local image feature vectors. Sampling consensus is a core step in many Artificial Intelligence (AI) algorithms that enable computer systems to recognize patterns in data. In this paper, we propose H-RANSAC, an algorithm for homography estimation that eliminates the need for feature vectors or explicit point pairing, while it optionally supports point labeling into two classes. H-RANSAC introduces a novel geometric (cheiral) criterion that intelligently rejects implausible point configurations at the beginning of each iteration, while leveraging concave quadrilaterals typically discarded by similar algorithms. A post-hoc criterion at the end of each iteration improves accuracy further. Analytical derivations of the expected maximum iterations are provided, considering success probabilities and outlier rates, enabling adaptive performance tuning. The algorithm is validated on a demanding task: estimating homography between video frames of football matches captured by 12 cameras with highly divergent viewpoints. Results show that H-RANSAC significantly outperforms state-of-the-art classical methods, combined with deep learning-based salient point detection, in terms of average reprojection error and success rates. The relevant implementation is available in https://github.com/gnousias/H-RANSAC.
- Abstract(参考訳): 根本的に異なるカメラポーズの下で撮影された画像とズームファクターの間のホモグラフィ行列を推定することは難しい課題である。
従来の手法はRandom Sample Consensus (RANSAC)アルゴリズムに頼っている。
コンセンサスをサンプリングすることは、多くの人工知能(AI)アルゴリズムの中核的なステップであり、コンピュータシステムがデータのパターンを認識できるようにする。
本稿では,H-RANSACを提案する。H-RANSACは,特徴ベクトルや明示的な点ペアリングの必要性を排除し,任意の2つのクラスへのポイントラベリングをサポートする。
H-RANSACは、各反復の開始時に不明瞭な点配置を知的に拒否する新しい幾何学的(スキル)基準を導入し、典型的には類似のアルゴリズムによって破棄される凹凸四辺形を活用する。
各イテレーションの終了時のポストホック基準により、さらに精度が向上する。
成功確率と外れ値率を考慮して、期待される最大イテレーションの解析的導出を行い、適応的なパフォーマンスチューニングを可能にする。
アルゴリズムは要求されたタスクに基づいて検証され、高度に異なる視点で12台のカメラが捉えたフットボールの試合のビデオフレーム間のホモグラフィーを推定する。
その結果、H-RANSACは、平均再投影誤差と成功率の点で、最先端の古典的手法と深層学習に基づく有能な点検出とを併用して、著しく優れていた。
関連する実装はhttps://github.com/gnousias/H-RANSACで公開されている。
関連論文リスト
- Pentagon-Match (PMatch): Identification of View-Invariant Planar Feature
for Local Feature Matching-Based Homography Estimation [2.240487187855135]
コンピュータビジョンにおいて、画像間の正確な点対応を見つけることは、画像縫合、画像検索、視覚的位置決めなど、多くのアプリケーションにおいて重要な役割を担っている。
これらの研究の多くは、RANSACのようなサンプリング手法が使われる前に局所的な特徴のマッチングに焦点を合わせ、初期マッチング結果の検証を行う。
ペンタゴン・マッチ (Pentagon-Match, PMatch) は、ペンタゴンをランダムにサンプリングし、初期一致したキーポイントの正当性を検証するために提案される。
論文 参考訳(メタデータ) (2023-05-27T12:41:23Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - A Geometrically Constrained Point Matching based on View-invariant
Cross-ratios, and Homography [2.050924050557755]
ビュー不変クロス比(CR)に基づく初期一致SIFTキーポイントの正当性検証のための幾何学的制約付きアルゴリズムを提案する。
これらのキーポイントからペンタゴンをランダムに形成し、画像間の形状と位置をCRとマッチングすることにより、堅牢な平面領域推定を効率的に行うことができる。
実験結果から,複数平面領域の複数シーンで良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-11-06T01:55:35Z) - Space-Partitioning RANSAC [30.255457622022487]
RANSACモデルの品質計算を高速化する新しいアルゴリズムを提案する。
この方法は、例えば2D-2D点対応などの関節対応空間を2つの正則格子に分割することに基づいている。
RANSACの実行時間を41%削減するが、精度は確実に低下しない。
論文 参考訳(メタデータ) (2021-11-24T10:10:04Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2Pは、イメージとポイントクラウドの間のクロスモダリティ登録のための新しいアプローチです。
本手法は,カメラとライダーの座標フレーム間の相対的剛性変換を推定する。
登録問題を分類および逆カメラ投影最適化問題に変換することで難易度を回避する。
論文 参考訳(メタデータ) (2021-04-08T04:27:32Z) - Efficient Initial Pose-graph Generation for Global SfM [56.38930515826556]
本稿では,グローバルなStructure-from-Motionアルゴリズムの初期ポーズグラフ生成を高速化する方法を提案する。
アルゴリズムは1DSfMデータセットから402130の画像ペアでテストされる。
論文 参考訳(メタデータ) (2020-11-24T09:32:03Z) - Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image
Classification [97.81205777897043]
近年の研究では、畳み込みニューラルネットワーク分類器は形状を犠牲にしてテクスチャを過度に依存していることが示されている。
一方、形状と局所像の区別は類似しているが異なるが、一方、グローバル画像統計は異なる。
提案手法は,pAdaIN (Permuted Adaptive Instance Normalization) と呼ばれ,画像分類器の隠蔽層におけるグローバル統計の表現を減少させる。
論文 参考訳(メタデータ) (2020-10-09T16:38:38Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - RANSAC-Flow: generic two-stage image alignment [53.11926395028508]
単純な教師なしのアプローチは、様々なタスクにおいて驚くほどうまく機能することを示す。
その単純さにもかかわらず、我々の手法は様々なタスクやデータセットで競合する結果を示す。
論文 参考訳(メタデータ) (2020-04-03T12:37:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。