Domain Knowledge Graph Construction Via A Simple Checker
- URL: http://arxiv.org/abs/2310.04949v1
- Date: Sun, 8 Oct 2023 00:09:31 GMT
- Title: Domain Knowledge Graph Construction Via A Simple Checker
- Authors: Yueling Zeng, Li-C. Wang
- Abstract summary: This work tackles the problem of knowledge graph construction from hardware-design domain texts.
We propose an oracle-checker scheme to leverage the power of GPT3.5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the availability of large language models, there is a growing interest
for semiconductor chip design companies to leverage the technologies. For those
companies, deployment of a new methodology must include two important
considerations: confidentiality and scalability. In this context, this work
tackles the problem of knowledge graph construction from hardware-design domain
texts. We propose an oracle-checker scheme to leverage the power of GPT3.5 and
demonstrate that the essence of the problem is in distillation of domain
expert's background knowledge. Using RISC-V unprivileged ISA specification as
an example, we explain key ideas and discuss practicality of our proposed
oracle-checker approach.
Related papers
- A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented generation (RAG) has emerged as a promising solution to customize large language models (LLMs)
This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-01-21T06:25:21Z) - Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - PatentGPT: A Large Language Model for Patent Drafting Using Knowledge-based Fine-tuning Method [1.4496326701907591]
Existing large language models (LLMs) often fall short in this IP creation domain due to their lack of specialized knowledge and context-awareness.
We propose a groundbreaking framework for Knowledge Fine-Tuning (KFT) of LLMs, designed to endow AI with the ability to autonomously mine, understand, and apply domain-specific knowledge.
Our model, PatentGPT, has demonstrated outstanding performance, scoring up to approximately 400% higher in patent related benchmark tests compared to state-of-the-art models.
arXiv Detail & Related papers (2024-08-26T12:00:29Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - PADTHAI-MM: Principles-based Approach for Designing Trustworthy, Human-centered AI using MAST Methodology [5.215782336985273]
The Multisource AI Scorecard Table (MAST) was designed to bridge the gap by offering a systematic, tradecraft-centered approach to evaluating AI-enabled decision support systems.
We introduce an iterative design framework called textitPrinciples-based Approach for Designing Trustworthy, Human-centered AI.
We demonstrate this framework in our development of the Reporting Assistant for Defense and Intelligence Tasks (READIT)
arXiv Detail & Related papers (2024-01-24T23:15:44Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
Privacy Protection [136.71290968343826]
Trustworthy graph learning (TwGL) aims to solve the above problems from a technical viewpoint.
In contrast to conventional graph learning research which mainly cares about model performance, TwGL considers various reliability and safety aspects.
arXiv Detail & Related papers (2022-05-20T08:10:35Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
Placement and routing are two indispensable and challenging (NP-hard) tasks in modern chip design flows.
Machine learning has shown promising prospects by its data-driven nature, which can be of less reliance on knowledge and priors.
arXiv Detail & Related papers (2022-02-28T06:28:44Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z) - CoreDiag: Eliminating Redundancy in Constraint Sets [68.8204255655161]
We present a new algorithm which can be exploited for the determination of minimal cores (minimal non-redundant constraint sets)
The algorithm is especially useful for distributed knowledge engineering scenarios where the degree of redundancy can become high.
In order to show the applicability of our approach, we present an empirical study conducted with commercial configuration knowledge bases.
arXiv Detail & Related papers (2021-02-24T09:16:10Z) - Semi-Supervised Learning Approach to Discover Enterprise User Insights
from Feedback and Support [9.66491980663996]
We propose and developed an innovative Semi-Supervised Learning approach by utilizing Deep Learning and Topic Modeling.
This approach combines a BERT-based multiclassification algorithm through supervised learning combined with a novel Probabilistic and Semantic Hybrid Topic Inference (PSHTI) Model.
Our system enables mapping the top words to the self-help issues by utilizing domain knowledge about the product through web-crawling.
arXiv Detail & Related papers (2020-07-18T01:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.