LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application
- URL: http://arxiv.org/abs/2405.03988v3
- Date: Thu, 26 Dec 2024 03:03:30 GMT
- Title: LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application
- Authors: Jian Jia, Yipei Wang, Yan Li, Honggang Chen, Xuehan Bai, Zhaocheng Liu, Jian Liang, Quan Chen, Han Li, Peng Jiang, Kun Gai,
- Abstract summary: Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
- Score: 54.984348122105516
- License:
- Abstract: Contemporary recommendation systems predominantly rely on ID embedding to capture latent associations among users and items. However, this approach overlooks the wealth of semantic information embedded within textual descriptions of items, leading to suboptimal performance and poor generalizations. Leveraging the capability of large language models to comprehend and reason about textual content presents a promising avenue for advancing recommendation systems. To achieve this, we propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge. We address computational complexity concerns by utilizing pretrained LLMs as item encoders and freezing LLM parameters to avoid catastrophic forgetting and preserve open-world knowledge. To bridge the gap between the open-world and collaborative domains, we design a twin-tower structure supervised by the recommendation task and tailored for practical industrial application. Through experiments on the real large-scale industrial dataset and online A/B tests, we demonstrate the efficacy of our approach in industry application. We also achieve state-of-the-art performance on six Amazon Review datasets to verify the superiority of our method.
Related papers
- Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models [15.41378841915072]
Large Language Models (LLMs) offer the potential to bridge the gap by leveraging human behavior understanding and extensive real-world knowledge.
We propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework.
Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
arXiv Detail & Related papers (2024-12-18T06:43:56Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
We propose REKI to acquire two types of external knowledge about users and items from large language models (LLMs)
We develop individual knowledge extraction and collective knowledge extraction tailored for different scales of scenarios, effectively reducing offline resource consumption.
Experiments demonstrate that REKI outperforms state-of-the-art baselines and is compatible with lots of recommendation algorithms and tasks.
arXiv Detail & Related papers (2024-08-20T03:45:24Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
Large language models (LLMs) have superior capabilities in basic tasks of language understanding and generation.
We introduce a representative approach to learning user and item representations using LLM as a feature encoder.
We then reviewed the latest advances in LLMs techniques for collaborative filtering enhanced recommendation systems.
arXiv Detail & Related papers (2024-03-05T08:31:00Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - ONCE: Boosting Content-based Recommendation with Both Open- and
Closed-source Large Language Models [39.193602991105]
Large language models (LLMs) possess deep semantic comprehension and extensive knowledge from pretraining.
We explore the potential of leveraging both open- and closed-source LLMs to enhance content-based recommendation.
We observed a significant relative improvement of up to 19.32% compared to existing state-of-the-art recommendation models.
arXiv Detail & Related papers (2023-05-11T04:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.