論文の概要: Prompt-augmented Temporal Point Process for Streaming Event Sequence
- arxiv url: http://arxiv.org/abs/2310.04993v2
- Date: Fri, 13 Oct 2023 08:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 16:47:37.316762
- Title: Prompt-augmented Temporal Point Process for Streaming Event Sequence
- Title(参考訳): ストリーミングイベントシーケンスのための瞬時時間点処理
- Authors: Siqiao Xue, Yan Wang, Zhixuan Chu, Xiaoming Shi, Caigao Jiang, Hongyan
Hao, Gangwei Jiang, Xiaoyun Feng, James Y. Zhang, Jun Zhou
- Abstract要約: 本稿では,ニューラル・テンポラル・ポイント・プロセス(TPP)モデルを継続的に監視するための新しいフレームワークを提案する。
PromptTPPは、3つの実際のユーザ行動データセットにわたって、最先端のパフォーマンスを一貫して達成する。
- 参考スコア(独自算出の注目度): 18.873915278172095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Temporal Point Processes (TPPs) are the prevalent paradigm for
modeling continuous-time event sequences, such as user activities on the web
and financial transactions. In real-world applications, event data is typically
received in a \emph{streaming} manner, where the distribution of patterns may
shift over time. Additionally, \emph{privacy and memory constraints} are
commonly observed in practical scenarios, further compounding the challenges.
Therefore, the continuous monitoring of a TPP to learn the streaming event
sequence is an important yet under-explored problem. Our work paper addresses
this challenge by adopting Continual Learning (CL), which makes the model
capable of continuously learning a sequence of tasks without catastrophic
forgetting under realistic constraints. Correspondingly, we propose a simple
yet effective framework, PromptTPP\footnote{Our code is available at {\small
\url{ https://github.com/yanyanSann/PromptTPP}}}, by integrating the base TPP
with a continuous-time retrieval prompt pool. The prompts, small learnable
parameters, are stored in a memory space and jointly optimized with the base
TPP, ensuring that the model learns event streams sequentially without
buffering past examples or task-specific attributes. We present a novel and
realistic experimental setup for modeling event streams, where PromptTPP
consistently achieves state-of-the-art performance across three real user
behavior datasets.
- Abstract(参考訳): neural temporal point process(tpp)は、web上のユーザアクティビティや金融取引など、継続的なイベントシーケンスをモデリングするための一般的なパラダイムである。
現実のアプリケーションでは、イベントデータは典型的には \emph{streaming} 形式で受信される。
さらに、emph{privacy and memory constraints} は実践的なシナリオで一般的に見られ、課題をさらに複雑にしている。
したがって、ストリーミングイベントシーケンスを学習するためのTPPの継続的な監視は、重要でありながら未探索の課題である。
我々の研究論文は、現実的な制約の下で破滅的な忘れをすることなく連続的なタスク列を学習できるモデルである連続学習(CL)を採用することで、この課題に対処する。
これに対応して, ベースTPPを連続的な検索プロンプトプールに統合することにより, 単純かつ効果的なフレームワークである PromptTPP\footnote{Our code is available at {\small \url{ https://github.com/yanSann/PromptTPP}}} を提案する。
プロンプト、小さな学習可能なパラメータはメモリ空間に格納され、ベースTPPと共同で最適化され、過去の例やタスク固有の属性をバッファリングすることなく、モデルがイベントストリームをシーケンシャルに学習することを保証する。
本稿では,PromptTPPが3つの実際のユーザ行動データセットに対して一貫して最先端のパフォーマンスを実現するイベントストリームをモデル化するための,新しい,現実的な実験環境を提案する。
関連論文リスト
- TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models [0.0]
時間的ポイントプロセス(TPP)は、ソーシャルネットワーク、交通システム、eコマースなどのドメインにおけるイベントのタイミングと発生をモデル化するために広く用いられている。
イベントシーケンスのセマンティックな側面と時間的側面の両方をキャプチャするために,大規模言語モデル(LLM)とTPPを統合する新しいフレームワークであるTPP-LLMを紹介する。
論文 参考訳(メタデータ) (2024-10-02T22:17:24Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
時間点プロセス(TPP)は、そのようなモデリングの標準的な方法である。
既存のTPPモデルは、イベントの相互作用を明示的にモデル化する代わりに、将来のイベントの条件分布に焦点を当てており、イベント予測の課題を示唆している。
本稿では,ニューラル推論(NRI)を利用して,観測データから動的パターンを同時に学習しながら,相互作用を推論するグラフを学習する手法を提案する。
論文 参考訳(メタデータ) (2023-09-06T09:47:03Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP)は、大規模なデータセット上でオフラインでトレーニングすることで、さまざまな下流タスクに対して印象的な結果を示している。
VLCP(Vision-Language Continual Pretraining)の研究を支援するために,我々はまず,包括的で統一されたベンチマークデータセットP9Dをコントリビュートする。
独立したタスクとしての各業界からのデータは、継続的な学習をサポートし、Webデータの事前学習をシミュレートする現実世界のロングテールな性質に準拠している。
論文 参考訳(メタデータ) (2023-08-14T13:53:18Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - HyperHawkes: Hypernetwork based Neural Temporal Point Process [5.607676459156789]
時間的ポイントプロセスは、連続した時間空間における時間間データのモデリングに不可欠なツールとして機能する。
動的環境における見えないシーケンスから事象を予測することは一般化できない。
ハイパーネットワークベースの時間的ポイントプロセスフレームワークである textitHyperHawkes を提案する。
論文 参考訳(メタデータ) (2022-10-01T07:14:19Z) - Modeling Continuous Time Sequences with Intermittent Observations using
Marked Temporal Point Processes [25.074394338483575]
人間の活動を通じて生成された大量のデータは、連続した時間のイベントのシーケンスとして表現することができる。
これらの連続的なイベントシーケンスに対するディープラーニングモデルは、非自明なタスクである。
本研究では,イベントシーケンスが欠落している場合にMTPPを学習するための新しい教師なしモデルと推論手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T18:23:20Z) - Temporal Context Aggregation Network for Temporal Action Proposal
Refinement [93.03730692520999]
時間的行動提案生成はビデオ理解分野において難しいが重要な課題である。
現在の方法はまだ不正確な時間境界と検索に使用される劣った自信に苦しんでいます。
TCANet は、「ローカルおよびグローバル」な時間的コンテキストアグリゲーションを通じて、高品質のアクション提案を生成するために提案します。
論文 参考訳(メタデータ) (2021-03-24T12:34:49Z) - Boundary-sensitive Pre-training for Temporal Localization in Videos [124.40788524169668]
本稿では,時間的局所化のためのモデル事前学習について,新しい境界感性プレテキスト(BSP)タスクを導入して検討する。
合成された境界により、BSPは境界型を分類することで簡単に実行できる。
大規模な実験により、提案したBSPは既存の行動分類に基づく事前学習法よりも優れ、相補的であることが示された。
論文 参考訳(メタデータ) (2020-11-21T17:46:24Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
本稿では、イベントシーケンス生成のための新規でシンプルなモデルを提案し、ビデオ中のイベントシーケンスの時間的関係を探索する。
提案モデルでは,非効率な2段階提案生成を省略し,双方向時間依存性を条件としたイベント境界を直接生成する。
総合システムは、チャレンジテストセットの9.894 METEORスコアで、ビデオタスクにおける密封イベントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-14T13:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。