Resource Efficient Boolean Function Solver on Quantum Computer
- URL: http://arxiv.org/abs/2310.05013v3
- Date: Tue, 24 Sep 2024 09:10:10 GMT
- Title: Resource Efficient Boolean Function Solver on Quantum Computer
- Authors: Xiang Li, Hanxiang Shen, Weiguo Gao, Yingzhou Li,
- Abstract summary: Grover's algorithm is one of the best-known quantum search algorithms in solving the nonlinear equation system on quantum computers.
We propose three novel techniques to improve the iteration efficiency under Grover's framework.
- Score: 7.833656237685403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear boolean equation systems play an important role in a wide range of applications. Grover's algorithm is one of the best-known quantum search algorithms in solving the nonlinear boolean equation system on quantum computers. In this paper, we propose three novel techniques to improve the efficiency under Grover's algorithm framework. A W-cycle circuit construction introduces a recursive idea to increase the solvable number of boolean equations given a fixed number of qubits. Then, a greedy compression technique is proposed to reduce the oracle circuit depth. Finally, a randomized Grover's algorithm randomly chooses a subset of equations to form a random oracle every iteration, which further reduces the circuit depth and the number of ancilla qubits. Numerical results on boolean quadratic equations demonstrate the efficiency of the proposed techniques.
Related papers
- Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations [0.8437187555622164]
We present an original algorithmic procedure to solve the Quantum Linear System Problem (QLSP) on a digital quantum device.
The result is a quantum algorithm avoiding the need for large controlled unitaries, requiring a number of qubits that is logarithmic in the system size.
We apply this to a physical problem of practical relevance, by leveraging decomposition theorems from linear algebra to solve the discretized Laplace Equation in a 2D grid.
arXiv Detail & Related papers (2024-09-13T15:46:32Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
This paper proposes a two-loop quantum solution algorithm for generation scheduling by quantum computing, machine learning, and distributed optimization.
The aim is to facilitate noisy employing near-term quantum machines with a limited number of qubits to solve practical power system problems.
arXiv Detail & Related papers (2023-03-28T21:31:39Z) - Grover's Algorithm Offers No Quantum Advantage [0.0]
Grover's algorithm is one of the primary algorithms offered as evidence that quantum computers can provide an advantage over classical computers.
We construct a quantum inspired algorithm, executable on a classical computer, that performs Grover's task in linear number of call to the oracle.
We critically examine the possibility of a practical speedup, a possibility that depends on the nature of the quantum circuit associated with the oracle.
arXiv Detail & Related papers (2023-03-20T17:56:20Z) - Quantum speedup of leverage score sampling and its application [0.0]
In this paper, we propose a quantum algorithm to accelerate the computation of leverage scores.
As an application, we propose a new quantum algorithm for rigid regression problems with vector solution outputs.
arXiv Detail & Related papers (2023-01-15T14:40:18Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
reversible circuits represent a subclass of reversible circuits with many applications in quantum computing.
We propose a new algorithm for any linear reversible operator by using an optimized version of the Gaussian elimination algorithm and a tuned LU factorization.
Overall, our algorithms improve the state-of-the-art methods for specific ranges of problem sizes.
arXiv Detail & Related papers (2022-01-17T16:31:42Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.