Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations
- URL: http://arxiv.org/abs/2409.08929v2
- Date: Mon, 23 Sep 2024 08:47:57 GMT
- Title: Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations
- Authors: Francesco Ghisoni, Francesco Scala, Daniele Bajoni, Dario Gerace,
- Abstract summary: We present an original algorithmic procedure to solve the Quantum Linear System Problem (QLSP) on a digital quantum device.
The result is a quantum algorithm avoiding the need for large controlled unitaries, requiring a number of qubits that is logarithmic in the system size.
We apply this to a physical problem of practical relevance, by leveraging decomposition theorems from linear algebra to solve the discretized Laplace Equation in a 2D grid.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding the solution to linear systems is at the heart of many applications in science and technology. Over the years a number of algorithms have been proposed to solve this problem on a digital quantum device, yet most of these are too demanding to be applied to the current noisy hardware. In this work, an original algorithmic procedure to solve the Quantum Linear System Problem (QLSP) is presented, which combines ideas from Variational Quantum Algorithms (VQA) and the framework of classical shadows. The result is the Shadow Quantum Linear Solver (SQLS), a quantum algorithm solving the QLSP avoiding the need for large controlled unitaries, requiring a number of qubits that is logarithmic in the system size. In particular, our heuristics show an exponential advantage of the SQLS in circuit execution per cost function evaluation when compared to other notorious variational approaches to solving linear systems of equations. We test the convergence of the SQLS on a number of linear systems, and results highlight how the theoretical bounds on the number of resources used by the SQLS are conservative. Finally, we apply this algorithm to a physical problem of practical relevance, by leveraging decomposition theorems from linear algebra to solve the discretized Laplace Equation in a 2D grid for the first time using a hybrid quantum algorithm.
Related papers
- Quantum Linear System Solvers: A Survey of Algorithms and Applications [2.27062345119129]
We summarize and analyze the main ideas behind some of the algorithms for the quantum linear systems problem in the literature.
We focus on the post-HHL enhancements which have paved the way towards optimal lower bounds with respect to error tolerance and condition number.
We discuss the potential applications of these algorithms in differential equations, quantum machine learning, and many-body physics.
arXiv Detail & Related papers (2024-11-04T19:03:25Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
We propose a quantum algorithm based on the recent advances on adiabatic-inspired QLSA.
We rigorously show that the total complexity of our implementation is polylogarithmic in the dimension.
arXiv Detail & Related papers (2024-03-28T20:37:32Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - A near-term quantum algorithm for solving linear systems of equations based on the Woodbury identity [0.602276990341246]
We describe a quantum algorithm for solving linear systems of equations that avoids problems such as barren plateaus and local optima.
Our algorithm is based on the Woodbury identity, which analytically describes the inverse of a matrix that is a low-rank modification of another (easily-invertible) matrix.
We estimate the inner product involving the solution of a system of more than 16 million equations with 2% error using IBM's Auckland quantum computer.
arXiv Detail & Related papers (2022-05-02T04:32:01Z) - Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations [0.22940141855172036]
The complexity of our algorithm is $O(rm polylog(n/epsilon))$, which provides an exponential improvement over the optimal classical algorithm in dimension $n$.
Our algorithm exponentially accelerates the solution of QNSE and has wide applications in all kinds of nonlinear problems.
arXiv Detail & Related papers (2021-12-03T00:27:16Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.