Robust-GBDT: GBDT with Nonconvex Loss for Tabular Classification in the Presence of Label Noise and Class Imbalance
- URL: http://arxiv.org/abs/2310.05067v2
- Date: Sat, 16 Mar 2024 01:17:11 GMT
- Title: Robust-GBDT: GBDT with Nonconvex Loss for Tabular Classification in the Presence of Label Noise and Class Imbalance
- Authors: Jiaqi Luo, Yuedong Quan, Shixin Xu,
- Abstract summary: Robust-GBDT is a groundbreaking approach that combines the resilience of non loss functions against label noise.
It significantly enhances capabilities, particularly in noisy and imbalanced datasets.
It paves the way for a new era of robust and precise classification across diverse real-world applications.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dealing with label noise in tabular classification tasks poses a persistent challenge in machine learning. While robust boosting methods have shown promise in binary classification, their effectiveness in complex, multi-class scenarios is often limited. Additionally, issues like imbalanced datasets, missing values, and computational inefficiencies further complicate their practical utility. This study introduces Robust-GBDT, a groundbreaking approach that combines the power of Gradient Boosted Decision Trees (GBDT) with the resilience of nonconvex loss functions against label noise. By leveraging local convexity within specific regions, Robust-GBDT demonstrates unprecedented robustness, challenging conventional wisdom. Through seamless integration of advanced GBDT with a novel Robust Focal Loss tailored for class imbalance, Robust-GBDT significantly enhances generalization capabilities, particularly in noisy and imbalanced datasets. Notably, its user-friendly design facilitates integration with existing open-source code, enhancing computational efficiency and scalability. Extensive experiments validate Robust-GBDT's superiority over other noise-robust methods, establishing a new standard for accurate classification amidst label noise. This research heralds a paradigm shift in machine learning, paving the way for a new era of robust and precise classification across diverse real-world applications.
Related papers
- Mitigating Instance-Dependent Label Noise: Integrating Self-Supervised Pretraining with Pseudo-Label Refinement [3.272177633069322]
Real-world datasets often contain noisy labels due to human error, ambiguity, or resource constraints during the annotation process.
We propose a novel framework that combines self-supervised learning using SimCLR with iterative pseudo-label refinement.
Our approach significantly outperforms several state-of-the-art methods, particularly under high noise conditions.
arXiv Detail & Related papers (2024-12-06T09:56:49Z) - One-step Noisy Label Mitigation [86.57572253460125]
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical.
We propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm.
We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs.
arXiv Detail & Related papers (2024-10-02T18:42:56Z) - An Embedding is Worth a Thousand Noisy Labels [0.11999555634662634]
We propose WANN, a weighted Adaptive Nearest Neighbor approach to address label noise.
We show WANN outperforms reference methods on diverse datasets of varying size and under various noise types and severities.
Our approach, emphasizing efficiency and explainability, emerges as a simple, robust solution to overcome the inherent limitations of deep neural network training.
arXiv Detail & Related papers (2024-08-26T15:32:31Z) - Improving GBDT Performance on Imbalanced Datasets: An Empirical Study of Class-Balanced Loss Functions [3.559225731091162]
This paper presents the first comprehensive study on adapting class-balanced loss functions to three Gradient Boosting Decision Trees (GBDT) algorithms.
We conduct extensive experiments on multiple datasets to evaluate the impact of class-balanced losses on different GBDT models.
Our results demonstrate the potential of class-balanced loss functions to enhance GBDT performance on imbalanced datasets.
arXiv Detail & Related papers (2024-07-19T15:10:46Z) - Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
We propose a meta-learning method which is capable of adaptively learning a hyper parameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster for brevity)
Four SOTA robust loss functions are attempted to be integrated with our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and performance.
arXiv Detail & Related papers (2023-01-18T04:54:58Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.