Enhancing Representations through Heterogeneous Self-Supervised Learning
- URL: http://arxiv.org/abs/2310.05108v3
- Date: Tue, 23 Apr 2024 05:06:10 GMT
- Title: Enhancing Representations through Heterogeneous Self-Supervised Learning
- Authors: Zhong-Yu Li, Bo-Wen Yin, Yongxiang Liu, Li Liu, Ming-Ming Cheng,
- Abstract summary: We propose Heterogeneous Self-Supervised Learning (HSSL), which enforces a base model to learn from an auxiliary head whose architecture is heterogeneous from the base model.
The HSSL endows the base model with new characteristics in a representation learning way without structural changes.
The HSSL is compatible with various self-supervised methods, achieving superior performances on various downstream tasks.
- Score: 61.40674648939691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating heterogeneous representations from different architectures has facilitated various vision tasks, e.g., some hybrid networks combine transformers and convolutions. However, complementarity between such heterogeneous architectures has not been well exploited in self-supervised learning. Thus, we propose Heterogeneous Self-Supervised Learning (HSSL), which enforces a base model to learn from an auxiliary head whose architecture is heterogeneous from the base model. In this process, HSSL endows the base model with new characteristics in a representation learning way without structural changes. To comprehensively understand the HSSL, we conduct experiments on various heterogeneous pairs containing a base model and an auxiliary head. We discover that the representation quality of the base model moves up as their architecture discrepancy grows. This observation motivates us to propose a search strategy that quickly determines the most suitable auxiliary head for a specific base model to learn and several simple but effective methods to enlarge the model discrepancy. The HSSL is compatible with various self-supervised methods, achieving superior performances on various downstream tasks, including image classification, semantic segmentation, instance segmentation, and object detection. Our source code will be made publicly available.
Related papers
- Aligning in a Compact Space: Contrastive Knowledge Distillation between Heterogeneous Architectures [4.119589507611071]
We propose a Low-Frequency Components-based Contrastive Knowledge Distillation (LFCC) framework that significantly enhances the performance of feature-based distillation.
Specifically, we designe a set of multi-scale low-pass filters to extract the low-frequency components of intermediate features from both the teacher and student models.
We show that LFCC achieves superior performance on the challenging benchmarks of ImageNet-1K and CIFAR-100.
arXiv Detail & Related papers (2024-05-28T18:44:42Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Deciphering the Projection Head: Representation Evaluation
Self-supervised Learning [6.375931203397043]
Self-supervised learning (SSL) aims to learn intrinsic features without labels.
Projection head always plays an important role in improving the performance of the downstream task.
We propose a Representation Evaluation Design (RED) in SSL models in which a shortcut connection between the representation and the projection vectors is built.
arXiv Detail & Related papers (2023-01-28T13:13:53Z) - Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot
Image Classification [61.411869453639845]
We introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations.
This design effectively helps the model to explore more subtle and discriminative features.
Experimental results on three widely used fine-grained image classification datasets consistently show considerable improvements.
arXiv Detail & Related papers (2022-11-30T16:55:14Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - Dual Path Structural Contrastive Embeddings for Learning Novel Objects [6.979491536753043]
Recent research shows that gaining information on a good feature space can be an effective solution to achieve favorable performance on few-shot tasks.
We propose a simple but effective paradigm that decouples the tasks of learning feature representations and classifiers.
Our method can still achieve promising results for both standard and generalized few-shot problems in either an inductive or transductive inference setting.
arXiv Detail & Related papers (2021-12-23T04:43:31Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.