Breaking Down Word Semantics from Pre-trained Language Models through
Layer-wise Dimension Selection
- URL: http://arxiv.org/abs/2310.05115v1
- Date: Sun, 8 Oct 2023 11:07:19 GMT
- Title: Breaking Down Word Semantics from Pre-trained Language Models through
Layer-wise Dimension Selection
- Authors: Nayoung Choi
- Abstract summary: This paper aims to disentangle semantic sense from BERT by applying a binary mask to middle outputs across the layers.
The disentangled embeddings are evaluated through binary classification to determine if the target word in two different sentences has the same meaning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Contextual word embeddings obtained from pre-trained language model (PLM)
have proven effective for various natural language processing tasks at the word
level. However, interpreting the hidden aspects within embeddings, such as
syntax and semantics, remains challenging. Disentangled representation learning
has emerged as a promising approach, which separates specific aspects into
distinct embeddings. Furthermore, different linguistic knowledge is believed to
be stored in different layers of PLM. This paper aims to disentangle semantic
sense from BERT by applying a binary mask to middle outputs across the layers,
without updating pre-trained parameters. The disentangled embeddings are
evaluated through binary classification to determine if the target word in two
different sentences has the same meaning. Experiments with cased
BERT$_{\texttt{base}}$ show that leveraging layer-wise information is effective
and disentangling semantic sense further improve performance.
Related papers
- Mitigating Semantic Leakage in Cross-lingual Embeddings via Orthogonality Constraint [6.880579537300643]
Current disentangled representation learning methods suffer from semantic leakage.
We propose a novel training objective, ORthogonAlity Constraint LEarning (ORACLE)
ORACLE builds upon two components: intra-class clustering and inter-class separation.
We demonstrate that training with the ORACLE objective effectively reduces semantic leakage and enhances semantic alignment within the embedding space.
arXiv Detail & Related papers (2024-09-24T02:01:52Z) - Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics [50.982315553104975]
We investigate the bottom-up evolution of lexical semantics for a popular large language model, namely Llama2.
Our experiments show that the representations in lower layers encode lexical semantics, while the higher layers, with weaker semantic induction, are responsible for prediction.
This is in contrast to models with discriminative objectives, such as mask language modeling, where the higher layers obtain better lexical semantics.
arXiv Detail & Related papers (2024-03-03T13:14:47Z) - Word Sense Induction with Knowledge Distillation from BERT [6.88247391730482]
This paper proposes a method to distill multiple word senses from a pre-trained language model (BERT) by using attention over the senses of a word in a context.
Experiments on the contextual word similarity and sense induction tasks show that this method is superior to or competitive with state-of-the-art multi-sense embeddings.
arXiv Detail & Related papers (2023-04-20T21:05:35Z) - Don't Judge a Language Model by Its Last Layer: Contrastive Learning
with Layer-Wise Attention Pooling [6.501126898523172]
Recent pre-trained language models (PLMs) achieved great success on many natural language processing tasks through learning linguistic features and contextualized sentence representation.
This paper introduces the attention-based pooling strategy, which enables the model to preserve layer-wise signals captured in each layer and learn digested linguistic features for downstream tasks.
arXiv Detail & Related papers (2022-09-13T13:09:49Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
We propose a self-supervised approach to model lexical semantic change.
We show that our method can be used for the detection of semantic change with any alignment method.
We illustrate the utility of our techniques using experimental results on three different datasets.
arXiv Detail & Related papers (2021-01-30T18:59:43Z) - Cross-lingual Word Sense Disambiguation using mBERT Embeddings with
Syntactic Dependencies [0.0]
Cross-lingual word sense disambiguation (WSD) tackles the challenge of disambiguating ambiguous words across languages given context.
BERT embedding model has been proven to be effective in contextual information of words.
This project investigates how syntactic information can be added into the BERT embeddings to result in both semantics- and syntax-incorporated word embeddings.
arXiv Detail & Related papers (2020-12-09T20:22:11Z) - On the Sentence Embeddings from Pre-trained Language Models [78.45172445684126]
In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited.
We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity.
We propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective.
arXiv Detail & Related papers (2020-11-02T13:14:57Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
We propose a novel method to explicitly inject linguistic knowledge in the form of word embeddings into a pre-trained BERT.
Our performance improvements on multiple semantic similarity datasets when injecting dependency-based and counter-fitted embeddings indicate that such information is beneficial and currently missing from the original model.
arXiv Detail & Related papers (2020-10-23T17:00:26Z) - SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in
BERT-based Embedding Spaces [63.17308641484404]
We propose to identify clusters among different occurrences of each target word, considering these as representatives of different word meanings.
Disagreements in obtained clusters naturally allow to quantify the level of semantic shift per each target word in four target languages.
Our approach performs well both measured separately (per language) and overall, where we surpass all provided SemEval baselines.
arXiv Detail & Related papers (2020-10-02T08:38:40Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word representations.
Our approach significantly improves crosslingual sentence retrieval performance over all other approaches.
It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task.
arXiv Detail & Related papers (2019-12-28T16:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.