Transferable Availability Poisoning Attacks
- URL: http://arxiv.org/abs/2310.05141v2
- Date: Thu, 6 Jun 2024 05:52:50 GMT
- Title: Transferable Availability Poisoning Attacks
- Authors: Yiyong Liu, Michael Backes, Xiao Zhang,
- Abstract summary: We consider availability data poisoning attacks, where an adversary aims to degrade the overall test accuracy of a machine learning model.
Existing poisoning strategies can achieve the attack goal but assume the victim to employ the same learning method as what the adversary uses to mount the attack.
We propose Transferable Poisoning, which first leverages the intrinsic characteristics of alignment and uniformity to enable better unlearnability.
- Score: 23.241524904589326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider availability data poisoning attacks, where an adversary aims to degrade the overall test accuracy of a machine learning model by crafting small perturbations to its training data. Existing poisoning strategies can achieve the attack goal but assume the victim to employ the same learning method as what the adversary uses to mount the attack. In this paper, we argue that this assumption is strong, since the victim may choose any learning algorithm to train the model as long as it can achieve some targeted performance on clean data. Empirically, we observe a large decrease in the effectiveness of prior poisoning attacks if the victim employs an alternative learning algorithm. To enhance the attack transferability, we propose Transferable Poisoning, which first leverages the intrinsic characteristics of alignment and uniformity to enable better unlearnability within contrastive learning, and then iteratively utilizes the gradient information from supervised and unsupervised contrastive learning paradigms to generate the poisoning perturbations. Through extensive experiments on image benchmarks, we show that our transferable poisoning attack can produce poisoned samples with significantly improved transferability, not only applicable to the two learners used to devise the attack but also to learning algorithms and even paradigms beyond.
Related papers
- Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors [26.36344184385407]
In this paper, we explore the threat of indiscriminate attacks on downstream tasks that apply pre-trained feature extractors.
We propose two types of attacks: (1) the input space attacks, where we modify existing attacks to craft poisoned data in the input space; and (2) the feature targeted attacks, where we find poisoned features by treating the learned feature representations as a dataset.
Our experiments examine such attacks in popular downstream tasks of fine-tuning on the same dataset and transfer learning that considers domain adaptation.
arXiv Detail & Related papers (2024-02-20T01:12:59Z) - PACOL: Poisoning Attacks Against Continual Learners [1.569413950416037]
In this work, we demonstrate that continual learning systems can be manipulated by malicious misinformation.
We present a new category of data poisoning attacks specific for continual learners, which we refer to as em Poisoning Attacks Against Continual learners (PACOL)
A comprehensive set of experiments shows the vulnerability of commonly used generative replay and regularization-based continual learning approaches against attack methods.
arXiv Detail & Related papers (2023-11-18T00:20:57Z) - HINT: Healthy Influential-Noise based Training to Defend against Data
Poisoning Attacks [12.929357709840975]
We propose an efficient and robust training approach to defend against data poisoning attacks based on influence functions.
Using influence functions, we craft healthy noise that helps to harden the classification model against poisoning attacks.
Our empirical results show that HINT can efficiently protect deep learning models against the effect of both untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2023-09-15T17:12:19Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Amplifying Membership Exposure via Data Poisoning [18.799570863203858]
In this paper, we investigate the third type of exploitation of data poisoning - increasing the risks of privacy leakage of benign training samples.
We propose a set of data poisoning attacks to amplify the membership exposure of the targeted class.
Our results show that the proposed attacks can substantially increase the membership inference precision with minimum overall test-time model performance degradation.
arXiv Detail & Related papers (2022-11-01T13:52:25Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Provable Defense Against Delusive Poisoning [64.69220849669948]
We show that adversarial training can be a principled defense method against delusive poisoning.
This implies that adversarial training can be a principled defense method against delusive poisoning.
arXiv Detail & Related papers (2021-02-09T09:19:47Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Poisoning Attacks on Algorithmic Fairness [14.213638219685656]
We introduce an optimization framework for poisoning attacks against algorithmic fairness.
We develop a gradient-based poisoning attack aimed at introducing classification disparities among different groups in the data.
We believe that our findings pave the way towards the definition of an entirely novel set of adversarial attacks targeting algorithmic fairness in different scenarios.
arXiv Detail & Related papers (2020-04-15T08:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.