Multi-Ship Tracking by Robust Similarity metric
- URL: http://arxiv.org/abs/2310.05171v1
- Date: Sun, 8 Oct 2023 14:05:10 GMT
- Title: Multi-Ship Tracking by Robust Similarity metric
- Authors: Hongyu Zhao, Gongming Wei, Yang Xiao, Xianglei Xing
- Abstract summary: Multi-ship tracking (MST) as a core technology has been proven to be applied to situational awareness at sea and the development of a navigational system for autonomous ships.
Despite impressive tracking outcomes achieved by multi-object tracking (MOT) algorithms for pedestrian and vehicle datasets, these models and techniques exhibit poor performance when applied to ship datasets.
In this paper, we address the weaknesses of IoU by incorporating the smallest convex shapes that enclose both the predicted and detected bounding boxes.
- Score: 10.882525351991875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-ship tracking (MST) as a core technology has been proven to be applied
to situational awareness at sea and the development of a navigational system
for autonomous ships. Despite impressive tracking outcomes achieved by
multi-object tracking (MOT) algorithms for pedestrian and vehicle datasets,
these models and techniques exhibit poor performance when applied to ship
datasets. Intersection of Union (IoU) is the most popular metric for computing
similarity used in object tracking. The low frame rates and severe image shake
caused by wave turbulence in ship datasets often result in minimal, or even
zero, Intersection of Union (IoU) between the predicted and detected bounding
boxes. This issue contributes to frequent identity switches of tracked objects,
undermining the tracking performance. In this paper, we address the weaknesses
of IoU by incorporating the smallest convex shapes that enclose both the
predicted and detected bounding boxes. The calculation of the tracking version
of IoU (TIoU) metric considers not only the size of the overlapping area
between the detection bounding box and the prediction box, but also the
similarity of their shapes. Through the integration of the TIoU into
state-of-the-art object tracking frameworks, such as DeepSort and ByteTrack, we
consistently achieve improvements in the tracking performance of these
frameworks.
Related papers
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame.
Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios.
We propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on bounding boxes.
arXiv Detail & Related papers (2024-08-28T05:53:30Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
arXiv Detail & Related papers (2023-04-10T18:55:10Z) - A CNN-LSTM Architecture for Marine Vessel Track Association Using
Automatic Identification System (AIS) Data [2.094022863940315]
This study introduces a 1D CNN-LSTM architecture-based framework for track association.
The proposed framework takes the marine vessel's location and motion data collected through the Automatic Identification System (AIS) as input and returns the most likely vessel track as output in real-time.
arXiv Detail & Related papers (2023-03-24T15:26:49Z) - QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking [73.52284039530261]
We present Quasi-Dense Similarity Learning, which densely samples hundreds of object regions on a pair of images for contrastive learning.
We find that the resulting distinctive feature space admits a simple nearest neighbor search at inference time for object association.
We show that our similarity learning scheme is not limited to video data, but can learn effective instance similarity even from static input.
arXiv Detail & Related papers (2022-10-12T15:47:36Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - End-to-end Deep Object Tracking with Circular Loss Function for Rotated
Bounding Box [68.8204255655161]
We introduce a novel end-to-end deep learning method based on the Transformer Multi-Head Attention architecture.
We also present a new type of loss function, which takes into account the bounding box overlap and orientation.
arXiv Detail & Related papers (2020-12-17T17:29:29Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.