Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring
- URL: http://arxiv.org/abs/2304.04816v1
- Date: Mon, 10 Apr 2023 18:55:10 GMT
- Title: Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring
- Authors: Cheng-Yen Yang, Alan Yu Shyang Tan, Melanie J. Underwood, Charlotte
Bodie, Zhongyu Jiang, Steve George, Karl Warr, Jenq-Neng Hwang, Emma Jones
- Abstract summary: The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
- Score: 22.228127377617028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of in-trawl catch monitoring for use in fishing operations is to
detect, track and classify fish targets in real-time from video footage.
Information gathered could be used to release unwanted bycatch in real-time.
However, traditional multi-object tracking (MOT) methods have limitations, as
they are developed for tracking vehicles or pedestrians with linear motions and
diverse appearances, which are different from the scenarios such as livestock
monitoring. Therefore, we propose a novel MOT method, built upon an existing
observation-centric tracking algorithm, by adopting a new iterative association
step to significantly boost the performance of tracking targets with a uniform
appearance. The iterative association module is designed as an extendable
component that can be merged into most existing tracking methods. Our method
offers improved performance in tracking targets with uniform appearance and
outperforms state-of-the-art techniques on our underwater fish datasets as well
as the MOT17 dataset, without increasing latency nor sacrificing accuracy as
measured by HOTA, MOTA, and IDF1 performance metrics.
Related papers
- RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
We propose a novel online and robust multi-object tracking approach named deep ExpansionIoU (Deep-EIoU) for sports scenarios.
Unlike conventional methods, we abandon the use of the Kalman filter and leverage the iterative scale-up ExpansionIoU and deep features for robust tracking in sports scenarios.
Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 77.2% on the SportsMOT dataset and 85.4% on the SoccerNet-Tracking dataset.
arXiv Detail & Related papers (2023-06-22T17:47:08Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
We propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module.
Our method can achieve the state-of-the-art performance with reasonable speed.
arXiv Detail & Related papers (2022-03-21T04:14:06Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
In this work, we adopt the pre-trained Mask R-CNN deep object detector as the baseline.
We introduce a novel inference architecture placed on top of FPN-ResNet101 backbone of Mask R-CNN to jointly perform detection and tracking.
The proposed single object tracker, TDIOT, applies an appearance similarity-based temporal matching for data association.
arXiv Detail & Related papers (2021-03-19T20:45:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
We introduce a probabilistic autoregressive motion model to score tracklet proposals.
This is achieved by training our model to learn the underlying distribution of natural tracklets.
Our experiments demonstrate the superiority of our approach at tracking objects in challenging sequences.
arXiv Detail & Related papers (2020-12-03T23:59:27Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.