Enhancing Cross-Dataset Performance of Distracted Driving Detection With
Score-Softmax Classifier
- URL: http://arxiv.org/abs/2310.05202v3
- Date: Fri, 20 Oct 2023 04:09:39 GMT
- Title: Enhancing Cross-Dataset Performance of Distracted Driving Detection With
Score-Softmax Classifier
- Authors: Cong Duan and Zixuan Liu and Jiahao Xia and Minghai Zhang and Jiacai
Liao and Libo Cao
- Abstract summary: Deep neural networks enable real-time monitoring of in-vehicle driver, facilitating the timely prediction of distractions, fatigue, and potential hazards.
Recent research has exposed unreliable cross-dataset end-to-end driver behavior recognition due to overfitting.
We introduce the Score-Softmax classifier, which addresses this issue by enhancing inter-class independence and Intra-class uncertainty.
- Score: 7.302402275736439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks enable real-time monitoring of in-vehicle driver,
facilitating the timely prediction of distractions, fatigue, and potential
hazards. This technology is now integral to intelligent transportation systems.
Recent research has exposed unreliable cross-dataset end-to-end driver behavior
recognition due to overfitting, often referred to as ``shortcut learning",
resulting from limited data samples. In this paper, we introduce the
Score-Softmax classifier, which addresses this issue by enhancing inter-class
independence and Intra-class uncertainty. Motivated by human rating patterns,
we designed a two-dimensional supervisory matrix based on marginal Gaussian
distributions to train the classifier. Gaussian distributions help amplify
intra-class uncertainty while ensuring the Score-Softmax classifier learns
accurate knowledge. Furthermore, leveraging the summation of independent
Gaussian distributed random variables, we introduced a multi-channel
information fusion method. This strategy effectively resolves the
multi-information fusion challenge for the Score-Softmax classifier.
Concurrently, we substantiate the necessity of transfer learning and
multi-dataset combination. We conducted cross-dataset experiments using the
SFD, AUCDD-V1, and 100-Driver datasets, demonstrating that Score-Softmax
improves cross-dataset performance without modifying the model architecture.
This provides a new approach for enhancing neural network generalization.
Additionally, our information fusion approach outperforms traditional methods.
Related papers
- iHHO-SMOTe: A Cleansed Approach for Handling Outliers and Reducing Noise to Improve Imbalanced Data Classification [0.0]
Classifying imbalanced datasets remains a significant challenge in machine learning.
Synthetic Minority Over-sampling Technique (SMOTE) generates new instances for the under-represented minority class.
A proposed approach, iHHO-SMOTe, addresses the limitations of SMOTE by first cleansing the data from noise points.
arXiv Detail & Related papers (2025-04-17T11:17:53Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
We show that the diversity of the final classification layers across clients impedes the performance of the FedAvg algorithm.
Motivated by this, we propose to correct model by variance reduction only on the final layers.
We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost.
arXiv Detail & Related papers (2022-12-05T11:56:35Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Distinction Maximization Loss: Efficiently Improving Classification
Accuracy, Uncertainty Estimation, and Out-of-Distribution Detection Simply
Replacing the Loss and Calibrating [2.262407399039118]
We propose training deterministic deep neural networks using our DisMax loss.
DisMax usually outperforms all current approaches simultaneously in classification accuracy, uncertainty estimation, inference efficiency, and out-of-distribution detection.
arXiv Detail & Related papers (2022-05-12T04:37:35Z) - Exploiting the Potential of Datasets: A Data-Centric Approach for Model
Robustness [48.70325679650579]
We propose a novel algorithm for dataset enhancement that works well for many existing deep neural networks.
In the data-centric robust learning competition hosted by Alibaba Group and Tsinghua University, our algorithm came third out of more than 3000 competitors.
arXiv Detail & Related papers (2022-03-10T12:16:32Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Neural Tangent Kernel Empowered Federated Learning [35.423391869982694]
Federated learning (FL) is a privacy-preserving paradigm where multiple participants jointly solve a machine learning problem without sharing raw data.
We propose a novel FL paradigm empowered by the neural tangent kernel (NTK) framework.
We show that the proposed paradigm can achieve the same accuracy while reducing the number of communication rounds by an order of magnitude.
arXiv Detail & Related papers (2021-10-07T17:58:58Z) - Investigating the Relationship Between Dropout Regularization and Model
Complexity in Neural Networks [0.0]
Dropout Regularization serves to reduce variance in Deep Learning models.
We explore the relationship between the dropout rate and model complexity by training 2,000 neural networks.
We build neural networks that predict the optimal dropout rate given the number of hidden units in each dense layer.
arXiv Detail & Related papers (2021-08-14T23:49:33Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable
Probabilistic Implicit Differentiation [3.118384520557952]
AutoAugment has sparked an interest in automated augmentation methods for deep learning models.
We show that those methods are not robust when applied to biased and noisy data.
We reformulate AutoAugment as a generalized automated dataset optimization (AutoDO) task.
Our experiments show up to 9.3% improvement for biased datasets with label noise compared to prior methods.
arXiv Detail & Related papers (2021-03-10T04:05:33Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.