A family of permutationally invariant quantum codes
- URL: http://arxiv.org/abs/2310.05358v3
- Date: Mon, 15 Apr 2024 16:48:55 GMT
- Title: A family of permutationally invariant quantum codes
- Authors: Arda Aydin, Max A. Alekseyev, Alexander Barg,
- Abstract summary: We show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors.
Our construction contains some of the previously known permutationally invariant quantum codes.
For small $t$, these conditions can be used to construct new examples of codes by computer.
- Score: 54.835469342984354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We construct a new family of permutationally invariant codes that correct $t$ Pauli errors for any $t\ge 1$. We also show that codes in the new family correct quantum deletion errors as well as spontaneous decay errors. Our construction contains some of the previously known permutationally invariant quantum codes as particular cases, which also admit transversal gates. In many cases, the codes in the new family are shorter than the best previously known explicit permutationally invariant codes for Pauli errors and deletions. Furthermore, our new code family includes a new $((4,2,2))$ optimal single-deletion-correcting code. As a separate result, we generalize the conditions for permutationally invariant codes to correct $t$ Pauli errors from the previously known results for $t=1$ to any number of errors. For small $t$, these conditions can be used to construct new examples of codes by computer.
Related papers
- Class of codes correcting absorptions and emissions [59.90381090395222]
We construct a family of quantum codes that protect against all emission, absorption, dephasing, and raising/lowering errors up to an arbitrary fixed order.
We derive simplified error correction conditions for a general AE code and show that any permutation-invariant code that corrects $le t$ errors can be mapped to an AE code.
arXiv Detail & Related papers (2024-10-04T16:14:03Z) - Qudit-based quantum error-correcting codes from irreducible representations of SU(d) [0.0]
Qudits naturally correspond to multi-level quantum systems, but their reliability is contingent upon quantum error correction capabilities.
We present a general procedure for constructing error-correcting qudit codes through the irreducible representations of $mathrmSU(d)$ for any odd integer $d geq 3.$
We use our procedure to construct an infinite class of error-correcting codes encoding a logical qudit into $(d-1)2$ physical qudits.
arXiv Detail & Related papers (2024-10-03T11:35:57Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Experimental Characterization of Fault-Tolerant Circuits in Small-Scale
Quantum Processors [67.47400131519277]
A code's logical gate set may be deemed fault-tolerant for gate sequences larger than 10 gates.
Some circuits did not satisfy the fault tolerance criterion.
It is most accurate to assess the fault tolerance criterion when the circuits tested are restricted to those that give rise to an output state with a low dimension.
arXiv Detail & Related papers (2021-12-08T01:52:36Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Short Codes for Quantum Channels with One Prevalent Pauli Error Type [6.548580592686076]
We investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type.
These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others.
arXiv Detail & Related papers (2021-04-09T13:51:51Z) - Permutation-Invariant Quantum Codes for Deletion Errors [3.8073142980733]
This paper presents conditions for constructing permutation-invariant quantum codes for deletion errors.
Our codes give the first example of quantum codes that can correct two or more deletion errors.
arXiv Detail & Related papers (2021-02-05T06:17:43Z) - Trade-offs on number and phase shift resilience in bosonic quantum codes [10.66048003460524]
One quantum error correction solution is to encode quantum information into one or more bosonic modes.
We show that by using arbitrarily many modes, $g$-gapped multi-mode codes can yield good approximate quantum error correction codes.
arXiv Detail & Related papers (2020-08-28T10:44:34Z) - Optimal Universal Quantum Error Correction via Bounded Reference Frames [8.572932528739283]
Error correcting codes with a universal set of gates are a desideratum for quantum computing.
We show that our approximate codes are capable of efficiently correcting different types of erasure errors.
Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the AdS-CFT duality.
arXiv Detail & Related papers (2020-07-17T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.