SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2310.05370v2
- Date: Tue, 26 Mar 2024 08:54:49 GMT
- Title: SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction
- Authors: Conghao Wong, Beihao Xia, Ziqian Zou, Yulong Wang, Xinge You,
- Abstract summary: We build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions.
We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models.
Experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions.
- Score: 19.075215661355486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analyzing and forecasting trajectories of agents like pedestrians and cars in complex scenes has become more and more significant in many intelligent systems and applications. The diversity and uncertainty in socially interactive behaviors among a rich variety of agents make this task more challenging than other deterministic computer vision tasks. Researchers have made a lot of efforts to quantify the effects of these interactions on future trajectories through different mathematical models and network structures, but this problem has not been well solved. Inspired by marine animals that localize the positions of their companions underwater through echoes, we build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions at different angular orientations relative to the target agent. We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models, and experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions when forecasting pedestrian trajectories in a way that is consistent with human intuitions.
Related papers
- SocialCircle+: Learning the Angle-based Conditioned Interaction Representation for Pedestrian Trajectory Prediction [10.240007698680097]
This manuscript focuses on explainability and conditionality requirements for trajectory prediction networks.
Inspired by marine animals perceiving other companions and the environment underwater by echolocation, this work constructs an angle-based conditioned social interaction representation SocialCircle+.
Experiments demonstrate the superiority of SocialCircle+ with different trajectory prediction backbones.
arXiv Detail & Related papers (2024-09-23T13:02:12Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Social-DualCVAE: Multimodal Trajectory Forecasting Based on Social
Interactions Pattern Aware and Dual Conditional Variational Auto-Encoder [14.05141917351931]
We present a conditional variational auto-encoder (Social-DualCVAE) for multi-modal trajectory forecasting.
It is based on a generative model conditioned not only on the past trajectories but also the unsupervised classification of interaction patterns.
The proposed model is evaluated on widely used trajectory benchmarks and outperforms the prior state-of-the-art methods.
arXiv Detail & Related papers (2022-02-08T16:04:47Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.