SocialCircle+: Learning the Angle-based Conditioned Interaction Representation for Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2409.14984v1
- Date: Mon, 23 Sep 2024 13:02:12 GMT
- Title: SocialCircle+: Learning the Angle-based Conditioned Interaction Representation for Pedestrian Trajectory Prediction
- Authors: Conghao Wong, Beihao Xia, Ziqian Zou, Xinge You,
- Abstract summary: This manuscript focuses on explainability and conditionality requirements for trajectory prediction networks.
Inspired by marine animals perceiving other companions and the environment underwater by echolocation, this work constructs an angle-based conditioned social interaction representation SocialCircle+.
Experiments demonstrate the superiority of SocialCircle+ with different trajectory prediction backbones.
- Score: 10.240007698680097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is a crucial aspect of understanding human behaviors. Researchers have made efforts to represent socially interactive behaviors among pedestrians and utilize various networks to enhance prediction capability. Unfortunately, they still face challenges not only in fully explaining and measuring how these interactive behaviors work to modify trajectories but also in modeling pedestrians' preferences to plan or participate in social interactions in response to the changeable physical environments as extra conditions. This manuscript mainly focuses on the above explainability and conditionality requirements for trajectory prediction networks. Inspired by marine animals perceiving other companions and the environment underwater by echolocation, this work constructs an angle-based conditioned social interaction representation SocialCircle+ to represent the socially interactive context and its corresponding conditions. It employs a social branch and a conditional branch to describe how pedestrians are positioned in prediction scenes socially and physically in angle-based-cyclic-sequence forms. Then, adaptive fusion is applied to fuse the above conditional clues onto the social ones to learn the final interaction representation. Experiments demonstrate the superiority of SocialCircle+ with different trajectory prediction backbones. Moreover, counterfactual interventions have been made to simultaneously verify the modeling capacity of causalities among interactive variables and the conditioning capability.
Related papers
- SocialCVAE: Predicting Pedestrian Trajectory via Interaction Conditioned
Latents [26.78995672139931]
This work proposes the social conditional variational autoencoder (SocialCVAE) for predicting pedestrian trajectories.
SocialCVAE learns socially reasonable motion randomness by utilizing a socially explainable interaction energy map.
Experimental results on two public benchmarks including 25 scenes demonstrate that SocialCVAE significantly improves prediction accuracy compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-02-27T09:13:27Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction [19.075215661355486]
We build a new anglebased trainable social interaction representation, named SocialCircle, for continuously reflecting the context of social interactions.
We validate the effect of the proposed SocialCircle by training it along with several newly released trajectory prediction models.
Experiments show that the SocialCircle not only quantitatively improves the prediction performance, but also qualitatively helps better simulate social interactions.
arXiv Detail & Related papers (2023-10-09T02:59:21Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.