論文の概要: Robust Image Watermarking based on Cross-Attention and Invariant Domain
Learning
- arxiv url: http://arxiv.org/abs/2310.05395v1
- Date: Mon, 9 Oct 2023 04:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 07:39:23.924698
- Title: Robust Image Watermarking based on Cross-Attention and Invariant Domain
Learning
- Title(参考訳): クロスアテンションと不変領域学習に基づくロバスト画像透かし
- Authors: Agnibh Dasgupta, Xin Zhong
- Abstract要約: 本稿では,クロスアテンションと不変領域学習を利用して,ロバストな画像透かし手法を提案する。
マルチヘッドクロスアテンション機構を用いた透かし埋め込み方式を設計し,表紙画像と透かしとの情報交換を可能にする。
第2に,透かしに関する意味的情報と雑音的不変情報の両方をカプセル化した不変領域表現の学習を提唱する。
- 参考スコア(独自算出の注目度): 1.6589012298747952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image watermarking involves embedding and extracting watermarks within a
cover image, with deep learning approaches emerging to bolster generalization
and robustness. Predominantly, current methods employ convolution and
concatenation for watermark embedding, while also integrating conceivable
augmentation in the training process. This paper explores a robust image
watermarking methodology by harnessing cross-attention and invariant domain
learning, marking two novel, significant advancements. First, we design a
watermark embedding technique utilizing a multi-head cross attention mechanism,
enabling information exchange between the cover image and watermark to identify
semantically suitable embedding locations. Second, we advocate for learning an
invariant domain representation that encapsulates both semantic and
noise-invariant information concerning the watermark, shedding light on
promising avenues for enhancing image watermarking techniques.
- Abstract(参考訳): 画像透かしは、画像内に透かしを埋め込んで抽出することを含み、深層学習アプローチは一般化と堅牢性を促進する。
典型的には、現在の方法では、ウォーターマークの埋め込みに畳み込みと結合を採用し、同時に学習プロセスに受容可能な拡張を統合する。
本稿では,クロス・アテンションと不変領域学習を活用し,2つの新しい有意な進歩を示すロバストな画像透かし手法について検討する。
まず,マルチヘッドクロスアテンション機構を用いた透かし埋め込み手法の設計を行い,カバー画像と透かし間の情報交換により,意味的に適切な埋め込み位置を識別する。
第2に,透かしに関する意味的情報と雑音不変情報の両方をカプセル化する不変領域表現の学習を提唱し,画像透かし技術を向上させるための有望な道筋に光を当てる。
関連論文リスト
- Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - Removing Interference and Recovering Content Imaginatively for Visible
Watermark Removal [63.576748565274706]
本研究では,Removing Interference and Recovering Content Imaginatively (RIRCI)フレームワークについて紹介する。
RIRCIは2段階のアプローチを具現化しており、最初のフェーズは透かし成分の識別と分離に焦点を当て、次のフェーズは背景コンテンツの復元に焦点を当てている。
本モデルでは,半透明透かしの下の固有背景情報を完全に探索できるデュアルパスネットワークを用いる。
論文 参考訳(メタデータ) (2023-12-22T02:19:23Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - WMFormer++: Nested Transformer for Visible Watermark Removal via Implict
Joint Learning [68.00975867932331]
既存の透かし除去法は主にタスク固有のデコーダブランチを持つUNetに依存している。
両分野の情報を包括的に統合するために,暗黙的な共同学習パラダイムを導入する。
その結果、既存の最先端手法をはるかに上回る、我々のアプローチの顕著な優位性を示した。
論文 参考訳(メタデータ) (2023-08-20T07:56:34Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Visible Watermark Removal via Self-calibrated Localization and
Background Refinement [21.632823897244037]
画像に透かした透かしを重ねることで、著作権問題に対処する強力な武器を提供する。
現代の透かし除去法は、透かしの局所化と背景復元を同時に行う。
上記の問題に対処する2段階のマルチタスクネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-08T06:43:55Z) - Split then Refine: Stacked Attention-guided ResUNets for Blind Single
Image Visible Watermark Removal [69.92767260794628]
従来の透かし除去方法は,ユーザから透かしの位置を取得したり,マルチタスクネットワークをトレーニングして,背景を無差別に復元する必要があった。
本稿では,注目誘導型ResUNetsを積み重ねた新しい2段階フレームワークを提案し,検出・除去・精錬の過程をシミュレートする。
様々な条件下で4つの異なるデータセット上でアルゴリズムを広範囲に評価し,その手法が他の最先端手法をはるかに上回っていることを示す実験を行った。
論文 参考訳(メタデータ) (2020-12-13T09:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。