論文の概要: AdaFuse: Adaptive Medical Image Fusion Based on Spatial-Frequential
Cross Attention
- arxiv url: http://arxiv.org/abs/2310.05462v1
- Date: Mon, 9 Oct 2023 07:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 07:07:27.506564
- Title: AdaFuse: Adaptive Medical Image Fusion Based on Spatial-Frequential
Cross Attention
- Title(参考訳): AdaFuse:空間/周波数交差注意に基づく適応医療画像融合
- Authors: Xianming Gu, Lihui Wang, Zeyu Deng, Ying Cao, Xingyu Huang and Yue-min
Zhu
- Abstract要約: 本稿では,周波数誘導型アテンション機構によりマルチモーダル画像情報を適応的に融合させるAdaFuseを提案する。
提案手法は,視覚的品質と定量的指標の両方の観点から,最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 6.910879180358217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal medical image fusion is essential for the precise clinical
diagnosis and surgical navigation since it can merge the complementary
information in multi-modalities into a single image. The quality of the fused
image depends on the extracted single modality features as well as the fusion
rules for multi-modal information. Existing deep learning-based fusion methods
can fully exploit the semantic features of each modality, they cannot
distinguish the effective low and high frequency information of each modality
and fuse them adaptively. To address this issue, we propose AdaFuse, in which
multimodal image information is fused adaptively through frequency-guided
attention mechanism based on Fourier transform. Specifically, we propose the
cross-attention fusion (CAF) block, which adaptively fuses features of two
modalities in the spatial and frequency domains by exchanging key and query
values, and then calculates the cross-attention scores between the spatial and
frequency features to further guide the spatial-frequential information fusion.
The CAF block enhances the high-frequency features of the different modalities
so that the details in the fused images can be retained. Moreover, we design a
novel loss function composed of structure loss and content loss to preserve
both low and high frequency information. Extensive comparison experiments on
several datasets demonstrate that the proposed method outperforms
state-of-the-art methods in terms of both visual quality and quantitative
metrics. The ablation experiments also validate the effectiveness of the
proposed loss and fusion strategy. Our code is publicly available at
https://github.com/xianming-gu/AdaFuse.
- Abstract(参考訳): マルチモーダル画像の融合は, 多モーダル画像の相補的情報を単一の画像にマージできるため, 正確な臨床診断と手術ナビゲーションに不可欠である。
融合画像の品質は、抽出された単一モダリティの特徴と、マルチモーダル情報に対する融合規則に依存する。
既存の深層学習に基づく融合法では各モードの意味的特徴を完全に活用することができ、各モードの有効低周波情報と高周波情報を識別することができず、適応的に融合することができない。
本稿では,フーリエ変換に基づく周波数誘導注意機構を用いてマルチモーダル画像情報を適応的に融合するadafuseを提案する。
具体的には,鍵と問合せ値の交換により空間領域と周波数領域の2つのモダリティの特徴を適応的に融合し,空間と周波数の特徴間のクロスアテンションスコアを算出し,空間と周波数の融合をさらに導くクロスアテンション融合(caf)ブロックを提案する。
cafブロックは、異なるモダリティの高周波特性を高め、融合画像の詳細を保持することができる。
さらに,低周波情報と高周波情報の両方を保持するために,構造損失とコンテンツ損失からなる新しい損失関数を設計する。
いくつかのデータセットにおける広範囲な比較実験により、提案手法が視覚品質と定量的指標の両方において最先端の手法よりも優れていることが示されている。
アブレーション実験は, 提案した損失・融合戦略の有効性も検証した。
私たちのコードはhttps://github.com/xianming-gu/adafuseで公開されています。
関連論文リスト
- DAE-Fuse: An Adaptive Discriminative Autoencoder for Multi-Modality Image Fusion [10.713089596405053]
二相識別型オートエンコーダフレームワークであるDAE-Fuseは、シャープで自然な融合画像を生成する。
公共の赤外線可視、医用画像融合、下流オブジェクト検出データセットの実験は、我々の方法の優位性と一般化性を示している。
論文 参考訳(メタデータ) (2024-09-16T08:37:09Z) - Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model [2.507050016527729]
トリモーダル医療画像融合は、病気の形状、位置、生物学的活動をより包括的に見ることができる。
画像装置の限界や患者の安全への配慮により、医療画像の品質は制限されることが多い。
画像の解像度を向上し、マルチモーダル情報を統合できる技術が緊急に必要である。
論文 参考訳(メタデータ) (2024-04-26T12:13:41Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
マルチ露光画像融合は、異なる露光で画像を統合することにより、単一の高ダイナミック画像を生成することを目的としている。
本稿では,MEF-SFI と呼ばれる空間周波数統合フレームワークによるマルチ露光画像融合の新たな視点を提案する。
提案手法は,最先端のマルチ露光画像融合手法に対する視覚的近似核融合結果を実現する。
論文 参考訳(メタデータ) (2023-12-17T04:45:15Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
画像融合のための新しい相互誘導動的ネットワーク(MGDN)を提案する。
5つのベンチマークデータセットによる実験結果から,提案手法は4つの画像融合タスクにおいて既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T03:50:37Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - TFormer: A throughout fusion transformer for multi-modal skin lesion
diagnosis [6.899641625551976]
我々は,MSLDで十分な情報干渉を行うために,純粋なトランスフォーマーベースのTFormer(スルーアウト・フュージョン・トランスフォーマー)を提案する。
そこで我々は,2分岐階層型マルチモーダルトランス (HMT) ブロックのスタックを慎重に設計し,ステージバイステージ方式で異なる画像モダリティ間で情報を融合する。
我々のTFormerは、他の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-11-21T12:07:05Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
我々は、赤外線と可視画像の融合を実現するために、CoCoNetと呼ばれるコントラスト学習ネットワークを提案する。
本手法は,主観的評価と客観的評価の両面において,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-11-20T12:02:07Z) - TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation
with Transformers [8.139069987207494]
コンボリューション層と強力なアテンション機構を用いた多視点画像情報をマージするトランスフォーマーベースのアーキテクチャであるTransFusionを提案する。
特に、ディバージェント・フュージョン・アテンション(DiFA)モジュールは、リッチ・クロスビュー・コンテキスト・モデリングとセマンティック・インテリジェンス・マイニングのために提案されている。
論文 参考訳(メタデータ) (2022-03-21T04:02:54Z) - Coupled Feature Learning for Multimodal Medical Image Fusion [42.23662451234756]
マルチモーダル画像融合は、取得した画像と異なるセンサーの関連情報を組み合わせることを目指しています。
本稿では,結合辞書学習に基づく新しいマルチモーダル画像融合法を提案する。
論文 参考訳(メタデータ) (2021-02-17T09:13:28Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。