Intelligent Tutoring System: Experience of Linking Software Engineering
and Programming Teaching
- URL: http://arxiv.org/abs/2310.05472v2
- Date: Fri, 13 Oct 2023 06:51:17 GMT
- Title: Intelligent Tutoring System: Experience of Linking Software Engineering
and Programming Teaching
- Authors: Zhiyu Fan, Yannic Noller, Ashish Dandekar, Abhik Roychoudhury
- Abstract summary: Existing systems that handle automated grading primarily focus on the automation of test case executions.
We have built an intelligent tutoring system that has the capability of providing automated feedback and grading.
- Score: 11.732008724228798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing number of computer science students pushes lecturers and
tutors of first-year programming courses to their limits to provide
high-quality feedback to the students. Existing systems that handle automated
grading primarily focus on the automation of test case executions in the
context of programming assignments. However, they cannot provide customized
feedback about the students' errors, and hence, cannot replace the help of
tutors. While recent research works in the area of automated grading and
feedback generation address this issue by using automated repair techniques, so
far, to the best of our knowledge, there has been no real-world deployment of
such techniques. Based on the research advances in recent years, we have built
an intelligent tutoring system that has the capability of providing automated
feedback and grading. Furthermore, we designed a Software Engineering course
that guides third-year undergraduate students in incrementally developing such
a system over the coming years. Each year, students will make contributions
that improve the current implementation, while at the same time, we can deploy
the current system for usage by first year students. This paper describes our
teaching concept, the intelligent tutoring system architecture, and our
experience with the stakeholders. This software engineering project for the
students has the key advantage that the users of the system are available
in-house (i.e., students, tutors, and lecturers from the first-year programming
courses). This helps organize requirements engineering sessions and builds
awareness about their contribution to a "to be deployed" software project. In
this multi-year teaching effort, we have incrementally built a tutoring system
that can be used in first-year programming courses. Further, it represents a
platform that can integrate the latest research results in APR for education.
Related papers
- WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
This paper focuses on creating a system for unit testing while integrating it into the course workflow.
In line with the framework's personalized student-centered approach, this method makes it easier for students to revise, and debug their programming work.
The course workflow updated to include unit tests will strengthen the learning environment and make it more interactive so that students can learn how to program robots in a self-guided fashion.
arXiv Detail & Related papers (2024-05-18T00:56:46Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Automated Computer Program Evaluation and Projects -- Our Experiences [0.0]
We describe the details of how we set up the tools and customized those for computer science courses.
Based on our experiences, we also provide a few insights on using these tools for effective learning.
arXiv Detail & Related papers (2024-04-06T06:42:58Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Building an Effective Automated Assessment System for C/C++ Introductory
Programming Courses in ODL Environment [0.0]
Traditional ways of assessing students' work are becoming insufficient in terms of both time and effort.
In distance education environment, such assessments become additionally more challenging in terms of hefty remuneration for hiring large number of tutors.
We identify different components that we believe are necessary in building an effective automated assessment system.
arXiv Detail & Related papers (2022-05-24T09:20:43Z) - Lifelong Learning Metrics [63.8376359764052]
The DARPA Lifelong Learning Machines (L2M) program seeks to yield advances in artificial intelligence (AI) systems.
This document outlines a formalism for constructing and characterizing the performance of agents performing lifelong learning scenarios.
arXiv Detail & Related papers (2022-01-20T16:29:14Z) - An Analysis of Programming Course Evaluations Before and After the
Introduction of an Autograder [1.329950749508442]
This paper studies the answers to the standardized university evaluation questionnaires of foundational computer science courses which recently introduced autograding.
We hypothesize how the autograder might have contributed to the significant changes in the data, such as, improved interactions between tutors and students, improved overall course quality, improved learning success, increased time spent, and reduced difficulty.
The autograder technology can be validated as a teaching method to improve student satisfaction with programming courses.
arXiv Detail & Related papers (2021-10-28T14:09:44Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
We show how data combined with machine learning techniques can predict how well a particular student will perform in a design task.
We found that our models using early design sequence actions are particularly valuable for prediction.
Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.
arXiv Detail & Related papers (2021-08-12T20:24:54Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Securing Bring-Your-Own-Device (BYOD) Programming Exams [1.9164932573056916]
Traditional pen and paper exams are inadequate for modern university programming courses.
Many institutions lack the resources or space to be able to run assessments in dedicated computer labs.
This has motivated the development of bring-your-own-device (BYOD) exam formats.
arXiv Detail & Related papers (2020-01-12T15:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.