Challenges and Paths Towards AI for Software Engineering
- URL: http://arxiv.org/abs/2503.22625v1
- Date: Fri, 28 Mar 2025 17:17:57 GMT
- Title: Challenges and Paths Towards AI for Software Engineering
- Authors: Alex Gu, Naman Jain, Wen-Ding Li, Manish Shetty, Yijia Shao, Ziyang Li, Diyi Yang, Kevin Ellis, Koushik Sen, Armando Solar-Lezama,
- Abstract summary: We discuss progress in AI for software engineering in threefold manner.<n>First, we provide a structured taxonomy of concrete tasks in AI for software engineering.<n>Second, we outline several key bottlenecks that limit current approaches.
- Score: 55.95365538122656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI. Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full potential. It should be possible to reach high levels of automation where humans can focus on the critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated away. Reaching this level of automation will require substantial research and engineering efforts across academia and industry. In this paper, we aim to discuss progress towards this in a threefold manner. First, we provide a structured taxonomy of concrete tasks in AI for software engineering, emphasizing the many other tasks in software engineering beyond code generation and completion. Second, we outline several key bottlenecks that limit current approaches. Finally, we provide an opinionated list of promising research directions toward making progress on these bottlenecks, hoping to inspire future research in this rapidly maturing field.
Related papers
- Artificial Intelligence for Quantum Computing [30.639337493477242]
Quantum computing is a prime candidate for AI's data-driven learning capabilities.
Bringing leading techniques from AI to QC requires drawing on expertise from arguably two of the most advanced and esoteric areas of computer science.
This paper reviews how state-of-the-art AI techniques are already advancing challenges across the hardware and software stack needed to develop useful QC.
arXiv Detail & Related papers (2024-11-14T02:11:16Z) - Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
The presented system architecture is based on the concept of dynamic, knowledge graph-based WebAssembly Twins.
The resulting systems are to possess advanced autonomous capabilities, with full transparency and controllability by the end user.
arXiv Detail & Related papers (2024-10-28T13:03:09Z) - The Future of Software Engineering in an AI-Driven World [4.915744683251151]
In the next five years, we will likely see an increasing symbiotic partnership between human developers and AI.
We present our vision of the future of software development in an AI-Driven world and explore the key challenges that our research community should address to realize this vision.
arXiv Detail & Related papers (2024-06-11T21:46:19Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
We identify six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI)<n>We identify benefits, harms, and future research directions for the four main themes.<n>We discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
arXiv Detail & Related papers (2023-07-27T23:02:24Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - The application of artificial intelligence in software engineering: a
review challenging conventional wisdom [0.9651131604396904]
This survey chapter is a review of the most commonplace methods of AI applied to software engineering.
The review covers methods between years 1975-2017, for the requirements phase, 46 major AI-driven methods are found.
The purpose of this chapter is to answer the following questions: is there sufficient intelligence in the SE lifecycle?
arXiv Detail & Related papers (2021-08-03T15:59:59Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.