HarmonicNeRF: Geometry-Informed Synthetic View Augmentation for 3D Scene Reconstruction in Driving Scenarios
- URL: http://arxiv.org/abs/2310.05483v5
- Date: Thu, 25 Jul 2024 07:08:24 GMT
- Title: HarmonicNeRF: Geometry-Informed Synthetic View Augmentation for 3D Scene Reconstruction in Driving Scenarios
- Authors: Xiaochao Pan, Jiawei Yao, Hongrui Kou, Tong Wu, Canran Xiao,
- Abstract summary: HarmonicNeRF is a novel approach for outdoor self-supervised monocular scene reconstruction.
It capitalizes on the strengths of NeRF and enhances surface reconstruction accuracy by augmenting the input space with geometry-informed synthetic views.
Our approach establishes new benchmarks in synthesizing novel depth views and reconstructing scenes, significantly outperforming existing methods.
- Score: 2.949710700293865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of autonomous driving, achieving precise 3D reconstruction of the driving environment is critical for ensuring safety and effective navigation. Neural Radiance Fields (NeRF) have shown promise in creating highly detailed and accurate models of complex environments. However, the application of NeRF in autonomous driving scenarios encounters several challenges, primarily due to the sparsity of viewpoints inherent in camera trajectories and the constraints on data collection in unbounded outdoor scenes, which typically occur along predetermined paths. This limitation not only reduces the available scene information but also poses significant challenges for NeRF training, as the sparse and path-distributed observational data leads to under-representation of the scene's geometry. In this paper, we introduce HarmonicNeRF, a novel approach for outdoor self-supervised monocular scene reconstruction. HarmonicNeRF capitalizes on the strengths of NeRF and enhances surface reconstruction accuracy by augmenting the input space with geometry-informed synthetic views. This is achieved through the application of spherical harmonics to generate novel radiance values, taking into careful consideration the color observations from the limited available real-world views. Additionally, our method incorporates proxy geometry to effectively manage occlusion, generating radiance pseudo-labels that circumvent the limitations of traditional image-warping techniques, which often fail in sparse data conditions typical of autonomous driving environments. Extensive experiments conducted on the KITTI, Argoverse, and NuScenes datasets demonstrate our approach establishes new benchmarks in synthesizing novel depth views and reconstructing scenes, significantly outperforming existing methods. Project page: https://github.com/Jiawei-Yao0812/HarmonicNeRF
Related papers
- Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Lightning NeRF: Efficient Hybrid Scene Representation for Autonomous
Driving [28.788240489289212]
Lightning NeRF is an efficient hybrid scene representation that effectively utilizes the geometry prior to LiDAR in autonomous driving scenarios.
It significantly improves the novel view synthesis performance of NeRF and reduces computational overheads.
Our approach achieves a five-fold increase in training speed and a ten-fold improvement in rendering speed.
arXiv Detail & Related papers (2024-03-09T13:14:27Z) - PC-NeRF: Parent-Child Neural Radiance Fields Using Sparse LiDAR Frames
in Autonomous Driving Environments [3.1969023045814753]
We propose a 3D scene reconstruction and novel view synthesis framework called parent-child neural radiance field (PC-NeRF)
PC-NeRF implements hierarchical spatial partitioning and multi-level scene representation, including scene, segment, and point levels.
With extensive experiments, PC-NeRF is proven to achieve high-precision novel LiDAR view synthesis and 3D reconstruction in large-scale scenes.
arXiv Detail & Related papers (2024-02-14T17:16:39Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
We introduce DehazeNeRF as a framework that robustly operates in hazy conditions.
We demonstrate successful multi-view haze removal, novel view synthesis, and 3D shape reconstruction where existing approaches fail.
arXiv Detail & Related papers (2023-03-20T18:03:32Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
We conduct the first pilot study on training NeRF with high-resolution data.
We propose the corresponding solutions, including marrying the multilayer perceptron with convolutional layers.
Our approach is nearly free without introducing obvious training/testing costs.
arXiv Detail & Related papers (2022-11-17T17:22:28Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.