論文の概要: On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks
- arxiv url: http://arxiv.org/abs/2310.05495v3
- Date: Tue, 29 Oct 2024 04:45:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 02:59:46.862324
- Title: On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks
- Title(参考訳): 過パラメータニューラルネットワークの部分的参加によるフェデレーション平均値の収束性について
- Authors: Xin Liu, Wei li, Dazhi Zhan, Yu Pan, Xin Ma, Yu Ding, Zhisong Pan,
- Abstract要約: フェデレートラーニング(FL)は、ローカルデータを共有せずに複数のクライアントから機械学習モデルを協調的に作成するための分散パラダイムである。
本稿では,FedAvgが世界規模で世界規模で収束していることを示す。
- 参考スコア(独自算出の注目度): 13.2844023993979
- License:
- Abstract: Federated learning (FL) is a widely employed distributed paradigm for collaboratively training machine learning models from multiple clients without sharing local data. In practice, FL encounters challenges in dealing with partial client participation due to the limited bandwidth, intermittent connection and strict synchronized delay. Simultaneously, there exist few theoretical convergence guarantees in this practical setting, especially when associated with the non-convex optimization of neural networks. To bridge this gap, we focus on the training problem of federated averaging (FedAvg) method for two canonical models: a deep linear network and a two-layer ReLU network. Under the over-parameterized assumption, we provably show that FedAvg converges to a global minimum at a linear rate $\mathcal{O}\left((1-\frac{min_{i \in [t]}|S_i|}{N^2})^t\right)$ after $t$ iterations, where $N$ is the number of clients and $|S_i|$ is the number of the participated clients in the $i$-th iteration. Experimental evaluations confirm our theoretical results.
- Abstract(参考訳): フェデレートラーニング(FL)は、ローカルデータを共有せずに複数のクライアントから機械学習モデルを協調訓練するための分散パラダイムである。
実際にFLは、帯域幅の制限、断続接続、厳密な同期遅延により、部分的なクライアント参加を扱う際の課題に直面している。
同時に、この実践的な環境では、特にニューラルネットワークの非凸最適化に関連する理論収束保証がほとんど存在しない。
このギャップを埋めるために、我々は2つの標準モデル(ディープ線形ネットワークと2層ReLUネットワーク)に対するフェデレーション平均化(FedAvg)法のトレーニング問題に焦点を当てた。
過度にパラメータ化された仮定の下では、FedAvg が線型レート $\mathcal{O}\left((1-\frac{min_{i \in [t]}|S_i|}{N^2})^t\right)$ の後に$t$ の反復で、$N$ はクライアントの数で、$|S_i|$ は第2の反復で参加しているクライアントの数であることを示す。
実験により理論的結果が確認された。
関連論文リスト
- Vertical Federated Learning with Missing Features During Training and Inference [37.44022318612869]
本稿では,ニューラルネットワークに基づくモデルの学習と推論を効率的に行うための垂直連合学習手法を提案する。
私たちのアプローチは単純だが効果的であり、タスクサンプリングと推論におけるパラメータの戦略的共有に依存しています。
数値実験により, ベースライン上におけるLASER-VFLの性能が向上した。
論文 参考訳(メタデータ) (2024-10-29T22:09:31Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
半同期クラウドモデルアグリゲーションの下で非直交多重アクセス(NOMA)を実現するHFLシステムを提案する。
提案手法は,HFLの性能改善と総コスト削減に関するベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-03T13:34:44Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent
Kernels [141.29156234353133]
最先端の凸学習手法は、クライアントが異なるデータ分布を持つ場合、集中型よりもはるかにパフォーマンスが劣る。
我々は、この格差は、非NISTityが提示した課題に大きく起因していることを示す。
本稿では,Train-Convexify Neural Network (TCT) 手法を提案する。
論文 参考訳(メタデータ) (2022-07-13T16:58:22Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
任意適応型オンラインモデルプルーニングを用いた異種FLアルゴリズムの一元化フレームワークを提案する。
特に、ある十分な条件下では、これらのアルゴリズムは一般的なスムーズなコスト関数に対して標準FLの定常点に収束する。
コンバージェンスに影響を与える2つの要因として,プルーニング誘導雑音と最小カバレッジ指数を照らす。
論文 参考訳(メタデータ) (2022-01-27T20:43:38Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Distributed Sparse Feature Selection in Communication-Restricted
Networks [6.9257380648471765]
疎線形回帰と特徴選択のための新しい分散スキームを提案し,理論的に解析する。
データセット全体から因果次元を推定するために,ネットワーク内の情報共有をシンプルかつ効果的に行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T05:02:24Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - A Revision of Neural Tangent Kernel-based Approaches for Neural Networks [34.75076385561115]
ニューラルネットワークカーネルを使用して、ネットワークが任意の有限トレーニングサンプルに完全に適合できることを示す。
単純で解析的なカーネル関数は、完全に訓練されたネットワークと同等のものとして導出された。
より厳密な分析により,スケーリングの問題が解決され,元のNTKに基づく結果の検証が可能となった。
論文 参考訳(メタデータ) (2020-07-02T05:07:55Z) - Distributed Non-Convex Optimization with Sublinear Speedup under
Intermittent Client Availability [46.85205907718874]
フェデレーション学習は新しい機械学習フレームワークで、多くのクライアントがトレーニングデータを共有することなく、協力的にモデルをトレーニングする。
本研究では,間欠的なモバイル環境におけるフェデレーション学習の実践と課題について考察する。
我々はFedLaAvg(略してFedLaAvg)と呼ばれる単純な分散非線形最適化アルゴリズムを提案する。
我々の理論的解析は、FedLaAvgが$(E1/2/(NT1/2)$の収束率に達し、クライアントの総数に対してサブ線形速度を達成することを示している。
論文 参考訳(メタデータ) (2020-02-18T06:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。