論文の概要: Towards Verifiable Generation: A Benchmark for Knowledge-aware Language
Model Attribution
- arxiv url: http://arxiv.org/abs/2310.05634v1
- Date: Mon, 9 Oct 2023 11:45:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 05:20:44.881124
- Title: Towards Verifiable Generation: A Benchmark for Knowledge-aware Language
Model Attribution
- Title(参考訳): 検証可能な生成に向けて:知識認識言語モデルの帰属に関するベンチマーク
- Authors: Xinze Li, Yixin Cao2, Liangming Pan, Yubo Ma, Aixin Sun
- Abstract要約: 我々は知識認識型言語モデル属性(KaLMA)の新しいタスクを定義する。
まず、構造化されていないテキストから知識グラフ(KG)へ属性ソースを拡張する。
第2に,不完全な知識リポジトリを考慮した「意識的非能力」の設定を提案する。
第3に,テキスト品質,引用品質,引用アライメントを含む総合的な自動評価指標を提案する。
- 参考スコア(独自算出の注目度): 48.92960579675478
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Although achieving great success, Large Language Models (LLMs) usually suffer
from unreliable hallucinations. In this paper, we define a new task of
Knowledge-aware Language Model Attribution (KaLMA) that improves upon three
core concerns on conventional attributed LMs. First, we extend attribution
source from unstructured texts to Knowledge Graph (KG), whose rich structures
benefit both the attribution performance and working scenarios. Second, we
propose a new ``Conscious Incompetence" setting considering the incomplete
knowledge repository, where the model identifies the need for supporting
knowledge beyond the provided KG. Third, we propose a comprehensive automatic
evaluation metric encompassing text quality, citation quality, and text
citation alignment. To implement the above innovations, we build a dataset in
biography domain BioKaLMA via a well-designed evolutionary question generation
strategy, to control the question complexity and necessary knowledge to the
answer. For evaluation, we develop a baseline solution and demonstrate the room
for improvement in LLMs' citation generation, emphasizing the importance of
incorporating the "Conscious Incompetence" setting, and the critical role of
retrieval accuracy.
- Abstract(参考訳): 大きな成功を収めるが、大言語モデル(llm)は通常、信頼性の低い幻覚に苦しむ。
本稿では,従来の属性付きLMにおける3つの中核的関心事を改善する,知識対応言語モデル属性(KaLMA)の新たなタスクを定義する。
まず,構造化されていないテキストから知識グラフ(kg)への帰属源を拡張し,そのリッチな構造は帰属性能と作業シナリオの両方に有益である。
Second, we propose a new ``Conscious Incompetence" setting considering the incomplete knowledge repository, where the model identifies the need for supporting knowledge beyond the provided KG. Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment. To implement the above innovations, we build a dataset in biography domain BioKaLMA via a well-designed evolutionary question generation strategy, to control the question complexity and necessary knowledge to the answer. For evaluation, we develop a baseline solution and demonstrate the room for improvement in LLMs' citation generation, emphasizing the importance of incorporating the "Conscious Incompetence" setting, and the critical role of retrieval accuracy.
関連論文リスト
- CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering [33.89497991289916]
そこで本研究では,新たな書込み手法であるCoTKRを提案し,推論トレースとそれに対応する知識をインターリーブ方式で生成する。
我々は,様々な知識グラフ質問回答 (KGQA) ベンチマークを用いて,様々な言語モデル (LLM) を用いて実験を行う。
論文 参考訳(メタデータ) (2024-09-29T16:08:45Z) - Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling [65.72918416258219]
支援性に基づく知識書き換え(SKR)は、LLM生成に本質的に最適化された堅牢でプラガブルな知識書き換えである。
知識支援に基づき、まず、リライターモデルのためのトレーニングデータキュレーション戦略を設計する。
次に、生成したリライトを最適な支持度に調整するために、直接選好最適化(DPO)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-06-12T11:52:35Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
本稿では,知識に基づく質問応答タスクの総合的なKG学習と活用を実現するための一般知識注入型カリキュラム事前学習フレームワーク(KICP)を提案する。
KIモジュールはまずKG中心の事前学習コーパスを生成してLMに知識を注入し、プロセスを3つの重要なステップに一般化する。
KAモジュールは、アダプタを備えたLMで生成されたコーパスから知識を学習し、元の自然言語理解能力を維持できる。
CRモジュールは人間の推論パターンに従って3つのコーパスを構築する。
論文 参考訳(メタデータ) (2024-03-11T03:42:03Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
我々は知識指向LLMアセスメントベンチマーク(KoLA)を構築した。
人間の認知を模倣して、知識関連能力の4段階の分類を形成し、19ドルのタスクをカバーします。
私たちは、LLMによって事前訓練されたコーパスであるウィキペディアと、継続的に収集された新興コーパスを使用して、目に見えないデータや進化する知識を扱う能力を評価します。
論文 参考訳(メタデータ) (2023-06-15T17:20:46Z) - Structured Knowledge Grounding for Question Answering [0.23068481501673416]
本稿では,知識に基づく質問応答の柔軟性,範囲の広さ,構造的推論に言語と知識を活用することを提案する。
具体的には,動的ホップを用いて関連するコンテキストを検索する知識構築手法を考案する。
そして、言語と知識の間のボトルネックを交換する情報を橋渡しする深層融合機構を考案する。
論文 参考訳(メタデータ) (2022-09-17T08:48:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。