A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
- URL: http://arxiv.org/abs/2310.05694v2
- Date: Tue, 11 Jun 2024 13:13:59 GMT
- Title: A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
- Authors: Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, Erik Cambria,
- Abstract summary: The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern.
This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process.
- Score: 32.10937977924507
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern due to their ability to effectively respond to freetext queries with certain professional knowledge. This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process, with the aim of providing an overview of the development roadmap from traditional Pretrained Language Models (PLMs) to LLMs. Specifically, we first explore the potential of LLMs to enhance the efficiency and effectiveness of various Healthcare applications highlighting both the strengths and limitations. Secondly, we conduct a comparison between the previous PLMs and the latest LLMs, as well as comparing various LLMs with each other. Then we summarize related Healthcare training data, training methods, optimization strategies, and usage. Finally, the unique concerns associated with deploying LLMs in Healthcare settings are investigated, particularly regarding fairness, accountability, transparency and ethics. Our survey provide a comprehensive investigation from perspectives of both computer science and Healthcare specialty. Besides the discussion about Healthcare concerns, we supports the computer science community by compiling a collection of open source resources, such as accessible datasets, the latest methodologies, code implementations, and evaluation benchmarks in the Github. Summarily, we contend that a significant paradigm shift is underway, transitioning from PLMs to LLMs. This shift encompasses a move from discriminative AI approaches to generative AI approaches, as well as a shift from model-centered methodologies to data-centered methodologies. Also, we determine that the biggest obstacle of using LLMs in Healthcare are fairness, accountability, transparency and ethics.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Leveraging Large Language Models for Patient Engagement: The Power of Conversational AI in Digital Health [1.8772687384996551]
Large language models (LLMs) have opened up new opportunities for transforming patient engagement in healthcare through conversational AI.
We showcase the power of LLMs in handling unstructured conversational data through four case studies.
arXiv Detail & Related papers (2024-06-19T16:02:04Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
This survey systematically summarizes how to train medical LLMs based on open-source general LLMs.
It covers (a) how to acquire training corpus and construct customized medical training sets, (b) how to choose an appropriate training paradigm, and (d) existing challenges and promising research directions.
arXiv Detail & Related papers (2024-06-14T02:42:20Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Large language models in healthcare and medical domain: A review [4.456243157307507]
Large language models (LLMs) provide proficient responses to free-text queries.
This review explores the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications.
arXiv Detail & Related papers (2023-12-12T20:54:51Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Better to Ask in English: Cross-Lingual Evaluation of Large Language
Models for Healthcare Queries [31.82249599013959]
Large language models (LLMs) are transforming the ways the general public accesses and consumes information.
LLMs demonstrate impressive language understanding and generation proficiencies, but concerns regarding their safety remain paramount.
It remains unclear how these LLMs perform in the context of non-English languages.
arXiv Detail & Related papers (2023-10-19T20:02:40Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.