Demystifying Large Language Models for Medicine: A Primer
- URL: http://arxiv.org/abs/2410.18856v3
- Date: Wed, 20 Nov 2024 01:04:33 GMT
- Title: Demystifying Large Language Models for Medicine: A Primer
- Authors: Qiao Jin, Nicholas Wan, Robert Leaman, Shubo Tian, Zhizheng Wang, Yifan Yang, Zifeng Wang, Guangzhi Xiong, Po-Ting Lai, Qingqing Zhu, Benjamin Hou, Maame Sarfo-Gyamfi, Gongbo Zhang, Aidan Gilson, Balu Bhasuran, Zhe He, Aidong Zhang, Jimeng Sun, Chunhua Weng, Ronald M. Summers, Qingyu Chen, Yifan Peng, Zhiyong Lu,
- Abstract summary: Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
- Score: 50.83806796466396
- License:
- Abstract: Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.
Related papers
- A Perspective for Adapting Generalist AI to Specialized Medical AI Applications and Their Challenges [33.20745682286796]
The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry.
This perspective paper aims to discuss the inner workings of building LLM-powered medical AI applications.
arXiv Detail & Related papers (2024-10-28T22:30:06Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
This survey systematically summarizes how to train medical LLMs based on open-source general LLMs.
It covers (a) how to acquire training corpus and construct customized medical training sets, (b) how to choose an appropriate training paradigm, and (d) existing challenges and promising research directions.
arXiv Detail & Related papers (2024-06-14T02:42:20Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
Patient data privacy often restricts the availability of old data when updating the model.
Prior CL studies overlooked two vital problems in the surgical domain.
This paper proposes addressing these problems with a multimodal large language model (LLM) and an adaptive weight assignment methodology.
arXiv Detail & Related papers (2024-02-26T15:35:24Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.