論文の概要: LLMLingua: Compressing Prompts for Accelerated Inference of Large
Language Models
- arxiv url: http://arxiv.org/abs/2310.05736v2
- Date: Wed, 6 Dec 2023 17:02:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 18:15:22.832401
- Title: LLMLingua: Compressing Prompts for Accelerated Inference of Large
Language Models
- Title(参考訳): LLMLingua: 大規模言語モデルの高速化推論のためのプロンプト圧縮
- Authors: Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, Lili Qiu
- Abstract要約: 大きな言語モデル(LLM)は、その驚くべき能力のために様々なアプリケーションに適用されている。
本稿では,意味的整合性を維持するための予算制御を伴う粗大なプロンプト圧縮手法であるLLMLinguaを提案する。
提案手法により,最先端性能が得られ,最大20倍圧縮が可能であり,性能損失が少ないことを示す。
- 参考スコア(独自算出の注目度): 22.06402870816756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have been applied in various applications due to
their astonishing capabilities. With advancements in technologies such as
chain-of-thought (CoT) prompting and in-context learning (ICL), the prompts fed
to LLMs are becoming increasingly lengthy, even exceeding tens of thousands of
tokens. To accelerate model inference and reduce cost, this paper presents
LLMLingua, a coarse-to-fine prompt compression method that involves a budget
controller to maintain semantic integrity under high compression ratios, a
token-level iterative compression algorithm to better model the interdependence
between compressed contents, and an instruction tuning based method for
distribution alignment between language models. We conduct experiments and
analysis over four datasets from different scenarios, i.e., GSM8K, BBH,
ShareGPT, and Arxiv-March23; showing that the proposed approach yields
state-of-the-art performance and allows for up to 20x compression with little
performance loss. Our code is available at https://aka.ms/LLMLingua.
- Abstract(参考訳): 大きな言語モデル(LLM)は、その驚くべき能力のために様々なアプリケーションに適用されている。
chain-of-thought (cot) プロンプトや in-context learning (icl) といった技術の進歩により、llm に供給されるプロンプトはますます長くなり、数万トークンを超えている。
モデル推論を高速化し、コストを削減するため、LLMLingua、高圧縮率下で意味的整合性を維持するための予算制御を伴う粗大なプロンプト圧縮法、圧縮されたコンテンツ間の相互依存性をより良くモデル化するトークンレベルの反復圧縮アルゴリズム、言語モデル間の分配アライメントのための命令チューニングに基づく手法を提案する。
我々は,GSM8K,BBH,ShareGPT,Arxiv- March23の4つのシナリオを対象とした実験と解析を行い,提案手法が最先端性能を実現し,性能損失の少ない最大20倍圧縮を実現することを示す。
私たちのコードはhttps://aka.ms/LLMLingua.comで利用可能です。
関連論文リスト
- LLMCBench: Benchmarking Large Language Model Compression for Efficient Deployment [36.958867918858296]
大規模言語モデル (LLM) は、その強力な知能を実証しているが、計算とストレージの需要が高いため、実用化は困難である。
本稿ではLLMCBench(Large Language Model Compression Benchmark)を提案する。
論文 参考訳(メタデータ) (2024-10-28T14:45:01Z) - Two are better than one: Context window extension with multi-grained self-injection [111.1376461868317]
SharedLLMは、多粒度コンテキスト圧縮とクエリ対応情報検索の設計哲学に基づく新しいアプローチである。
本研究では,テキストチャンクの多粒度コンテキスト情報を効率的にエンコードし,保存し,検索するための木構造データ構造を提案する。
論文 参考訳(メタデータ) (2024-10-25T06:08:59Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
大型言語モデル(LLM)はゼロショット設定でグラデーション先行として振る舞うことができる。
本稿では,LSMと算術符号を統合する新しい手法であるLM-GCを紹介する。
論文 参考訳(メタデータ) (2024-09-26T13:38:33Z) - LanguaShrink: Reducing Token Overhead with Psycholinguistics [8.123272461141815]
LanguaShrinkは、大規模言語モデルの即時圧縮フレームワークである。
本質的な情報を保持しながら、即時長を短縮する。
既存のプロンプト圧縮手法と比較して、LanguaShrinkはエンドツーエンドのレイテンシを1.43倍改善している。
論文 参考訳(メタデータ) (2024-09-01T22:09:20Z) - Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models [21.025001473355996]
大規模言語モデル(LLM)の即時圧縮問題について定式化する。
ブラックボックスモデルのハードプロンプトを生成するトークンレベルのプロンプト圧縮手法を統合するためのフレームワークを提案する。
本稿では,現在の高速圧縮法の性能と最適戦略との間に大きなギャップがあることを述べる。
論文 参考訳(メタデータ) (2024-07-22T09:40:13Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - Extending Context Window of Large Language Models via Semantic
Compression [21.35020344956721]
大規模言語モデル(LLM)は、しばしば、流動的で関連する応答の生成を保証するために、テキスト入力の長さに制限を課す。
本稿では,テキストを6~8倍長大に一般化するセマンティック圧縮手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T07:04:33Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
圧縮モデルにより,このトレードオフを最適化する新たな視点を導入する。
本稿では,圧縮されたモデルを学習プロセスに公開するソフトプロンプト学習法を提案する。
我々のソフトプロンプト戦略は8x圧縮LLaMA-7Bモデルの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-17T20:45:13Z) - Revisiting Offline Compression: Going Beyond Factorization-based Methods
for Transformer Language Models [7.542276054279341]
トランスフォーマー言語モデルは、多くの自然言語処理(NLP)タスクにおいて卓越した結果を達成する。
その巨大なサイズは、しばしばメモリ制限されたデバイスを非現実的にし、実践者はそれをより小さなネットワークに圧縮する必要がある。
本稿では,圧縮モデルをさらに微調整する必要のないオフライン圧縮手法について検討する。
論文 参考訳(メタデータ) (2023-02-08T13:36:06Z) - Compression of Generative Pre-trained Language Models via Quantization [62.80110048377957]
従来の量子化手法は, テクスモジニアス単語の埋め込みによって生成タスクに失敗することがわかった。
本稿では,区別可能な単語埋め込みを学習するためのトークンレベルのコントラスト蒸留法と,異なるモジュールに対して量子化器を適応させるモジュールワイドダイナミックスケーリングを提案する。
論文 参考訳(メタデータ) (2022-03-21T02:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。