Sharing Information Between Machine Tools to Improve Surface Finish
Forecasting
- URL: http://arxiv.org/abs/2310.05807v1
- Date: Mon, 9 Oct 2023 15:44:35 GMT
- Title: Sharing Information Between Machine Tools to Improve Surface Finish
Forecasting
- Authors: Daniel R. Clarkson, Lawrence A. Bull, Tina A. Dardeno, Chandula T.
Wickramarachchi, Elizabeth J. Cross, Timothy J. Rogers, Keith Worden,
Nikolaos Dervilis and Aidan J. Hughes
- Abstract summary: The authors propose a Bayesian hierarchical model to predict surface-roughness measurements for a turning machining process.
The hierarchical model is compared to multiple independent Bayesian linear regression models to showcase the benefits of partial pooling in a machining setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At present, most surface-quality prediction methods can only perform
single-task prediction which results in under-utilised datasets, repetitive
work and increased experimental costs. To counter this, the authors propose a
Bayesian hierarchical model to predict surface-roughness measurements for a
turning machining process. The hierarchical model is compared to multiple
independent Bayesian linear regression models to showcase the benefits of
partial pooling in a machining setting with respect to prediction accuracy and
uncertainty quantification.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - An Experimental Study on the Rashomon Effect of Balancing Methods in Imbalanced Classification [0.0]
This paper examines the impact of balancing methods on predictive multiplicity using the Rashomon effect.
It is crucial because the blind model selection in data-centric AI is risky from a set of approximately equally accurate models.
arXiv Detail & Related papers (2024-03-22T13:08:22Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
arXiv Detail & Related papers (2022-12-20T00:06:28Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
Recent success in fine-tuning large models, that are pretrained on broad data at scale, on downstream tasks has led to a significant paradigm shift in deep learning.
This paper proposes a new task-agnostic framework, textitSynBench, to measure the quality of pretrained representations using synthetic data.
arXiv Detail & Related papers (2022-10-06T15:25:00Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.