Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems
- URL: http://arxiv.org/abs/2212.09920v1
- Date: Tue, 20 Dec 2022 00:06:28 GMT
- Title: Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems
- Authors: Jill-J\^enn Vie, Tomas Rigaux, Hisashi Kashima
- Abstract summary: We propose a variational formulation of factorization machines (FMs) that can be easily optimized using standard mini-batch descent gradient.
Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions.
We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy.
- Score: 17.050774091903552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Factorization machines (FMs) are a powerful tool for regression and
classification in the context of sparse observations, that has been
successfully applied to collaborative filtering, especially when side
information over users or items is available. Bayesian formulations of FMs have
been proposed to provide confidence intervals over the predictions made by the
model, however they usually involve Markov-chain Monte Carlo methods that
require many samples to provide accurate predictions, resulting in slow
training in the context of large-scale data. In this paper, we propose a
variational formulation of factorization machines that allows us to derive a
simple objective that can be easily optimized using standard mini-batch
stochastic gradient descent, making it amenable to large-scale data. Our
algorithm learns an approximate posterior distribution over the user and item
parameters, which leads to confidence intervals over the predictions. We show,
using several datasets, that it has comparable or better performance than
existing methods in terms of prediction accuracy, and provide some applications
in active learning strategies, e.g., preference elicitation techniques.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
We show that Sparse Implicit Processes (SIP) is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model.
We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
arXiv Detail & Related papers (2022-07-21T18:00:01Z) - MRCLens: an MRC Dataset Bias Detection Toolkit [82.44296974850639]
We introduce MRCLens, a toolkit that detects whether biases exist before users train the full model.
For the convenience of introducing the toolkit, we also provide a categorization of common biases in MRC.
arXiv Detail & Related papers (2022-07-18T21:05:39Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Multi-output Gaussian Processes for Uncertainty-aware Recommender
Systems [3.908842679355254]
We introduce an efficient strategy for model training and inference, resulting in a model that scales to very large and sparse datasets.
Our model also provides meaningful uncertainty estimates about quantifying that prediction.
arXiv Detail & Related papers (2021-06-08T10:01:14Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.