Implicit Concept Removal of Diffusion Models
- URL: http://arxiv.org/abs/2310.05873v5
- Date: Wed, 3 Jul 2024 15:45:26 GMT
- Title: Implicit Concept Removal of Diffusion Models
- Authors: Zhili Liu, Kai Chen, Yifan Zhang, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James Kwok,
- Abstract summary: Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
- Score: 92.55152501707995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed as the "implicit concepts", could be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model's ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present the Geom-Erasing, a novel concept removal method based on the geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (i.e., QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving the state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.
Related papers
- How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
We propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images.
Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
arXiv Detail & Related papers (2024-07-17T05:21:41Z) - ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction [20.43411883845885]
We introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts.
Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models.
We present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects.
arXiv Detail & Related papers (2024-07-09T17:50:28Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning [0.0]
We propose a novel concept-erasure method that updates the text encoder using few-shot unlearning.
Our method can erase a concept within 10 s, making concept erasure more accessible than ever before.
arXiv Detail & Related papers (2024-05-12T14:01:05Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Circumventing Concept Erasure Methods For Text-to-Image Generative
Models [26.804057000265434]
Text-to-image generative models can produce photo-realistic images for an extremely broad range of concepts.
These models have numerous drawbacks, including their potential to generate images featuring sexually explicit content.
Various methods have been proposed in order to "erase" sensitive concepts from text-to-image models.
arXiv Detail & Related papers (2023-08-03T02:34:01Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.