Learning to Decode the Surface Code with a Recurrent, Transformer-Based
Neural Network
- URL: http://arxiv.org/abs/2310.05900v1
- Date: Mon, 9 Oct 2023 17:41:37 GMT
- Title: Learning to Decode the Surface Code with a Recurrent, Transformer-Based
Neural Network
- Authors: Johannes Bausch, Andrew W Senior, Francisco J H Heras, Thomas Edlich,
Alex Davies, Michael Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu,
Sam Blackwell, George Holland, Dvir Kafri, Juan Atalaya, Craig Gidney, Demis
Hassabis, Sergio Boixo, Hartmut Neven, Pushmeet Kohli
- Abstract summary: We present a recurrent, transformer-based neural network which learns to decode the surface code, the leading quantum error-correction code.
Our decoder outperforms state-of-the-art algorithmic decoders on real-world data from Google's Sycamore quantum processor for distance 3 and 5 surface codes.
- Score: 11.566578424972406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error-correction is a prerequisite for reliable quantum computation.
Towards this goal, we present a recurrent, transformer-based neural network
which learns to decode the surface code, the leading quantum error-correction
code. Our decoder outperforms state-of-the-art algorithmic decoders on
real-world data from Google's Sycamore quantum processor for distance 3 and 5
surface codes. On distances up to 11, the decoder maintains its advantage on
simulated data with realistic noise including cross-talk, leakage, and analog
readout signals, and sustains its accuracy far beyond the 25 cycles it was
trained on. Our work illustrates the ability of machine learning to go beyond
human-designed algorithms by learning from data directly, highlighting machine
learning as a strong contender for decoding in quantum computers.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Convolutional neural network based decoders for surface codes [0.0]
This work reports a study of decoders based on convolutional neural networks, tested on different code distances and noise models.
The results show that decoders based on convolutional neural networks have good performance and can adapt to different noise models.
arXiv Detail & Related papers (2023-12-06T14:07:31Z) - Decoding algorithms for surface codes [0.0]
Surface codes currently stand as the most promising candidates to build near term error corrected qubits.
A critical aspect of decoding algorithms is their speed, since the quantum state will suffer additional errors with the passage of time.
We describe the core principles of these decoding methods as well as existing variants that show promise for improved results.
arXiv Detail & Related papers (2023-07-27T16:34:52Z) - Neural network decoder for near-term surface-code experiments [0.7100520098029438]
Neural-network decoders can achieve a lower logical error rate compared to conventional decoders.
These decoders require no prior information about the physical error rates, making them highly adaptable.
arXiv Detail & Related papers (2023-07-06T20:31:25Z) - Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
We explore a model-free, data-driven, approach to decoding, using a graph neural network (GNN)
We show that the GNN-based decoder can outperform a matching decoder for circuit level noise on the surface code given only simulated data.
The results show that a purely data-driven approach to decoding may be a viable future option for practical quantum error correction.
arXiv Detail & Related papers (2023-07-03T17:25:45Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.