Quantum Illumination and Quantum Radar: A Brief Overview
- URL: http://arxiv.org/abs/2310.06049v3
- Date: Sat, 27 Jul 2024 11:36:02 GMT
- Title: Quantum Illumination and Quantum Radar: A Brief Overview
- Authors: Athena Karsa, Alasdair Fletcher, Gaetana Spedalieri, Stefano Pirandola,
- Abstract summary: We present a broad overview of the field of quantum target detection focusing on QI and its potential as an underlying scheme for a quantum radar operating at microwave frequencies.
Our aim is to provide a balanced discussion on the state of theoretical and experimental progress towards realising a working QI-based quantum radar, and draw conclusions about its current outlook and future directions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum illumination (QI) and quantum radar have emerged as potentially groundbreaking technologies, leveraging the principles of quantum mechanics to revolutionise the field of remote sensing and target detection. The protocol, particularly in the context of quantum radar, has been subject to a great deal of aspirational conjecture as well as criticism with respect to its realistic potential. In this review, we present a broad overview of the field of quantum target detection focusing on QI and its potential as an underlying scheme for a quantum radar operating at microwave frequencies. We provide context for the field by considering its historical development and fundamental principles. Our aim is to provide a balanced discussion on the state of theoretical and experimental progress towards realising a working QI-based quantum radar, and draw conclusions about its current outlook and future directions.
Related papers
- Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Advances in Quantum Radar and Quantum LiDAR [0.0]
Quantum sensing is revolutionizing precision and sensitivity across diverse domains.
Its impact is now stretching into radar and LiDAR applications, giving rise to the concept of quantum radar.
This review offers valuable insights into the current state of quantum radar.
arXiv Detail & Related papers (2023-10-11T05:18:33Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Radars and Lidars: Concepts, realizations, and perspectives [0.0]
We discuss how several concepts from traditional radars technology can be translated to quantum radars.
We consider possibilities of achieving super-sensitivity and super-resolution using quantum correlations.
arXiv Detail & Related papers (2022-06-25T07:44:55Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Energetic Considerations in Quantum Target Ranging [0.0]
An unknown return time makes a QI-based protocol difficult to realise.
Applying CPF to time bins, one finds an upper-bound on the error probability for quantum target ranging.
We show that for such a scheme a quantum advantage may not physically be realised.
arXiv Detail & Related papers (2020-11-06T23:49:39Z) - Dynamic framework for criticality-enhanced quantum sensing [1.819932604590499]
Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing.
We propose a framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions.
It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing.
arXiv Detail & Related papers (2020-08-26T05:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.