論文の概要: Augmenting Vision-Based Human Pose Estimation with Rotation Matrix
- arxiv url: http://arxiv.org/abs/2310.06068v1
- Date: Mon, 9 Oct 2023 18:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 02:17:14.470896
- Title: Augmenting Vision-Based Human Pose Estimation with Rotation Matrix
- Title(参考訳): 回転行列を用いた視覚に基づく人文推定
- Authors: Milad Vazan, Fatemeh Sadat Masoumi, Ruizhi Ou, Reza Rawassizadeh
- Abstract要約: 本研究では,ポーズ推定と新たなデータ拡張手法,すなわち回転行列を併用したモデルを提案する。
ポーズ推定データに基づく行動認識の分類精度を高めることを目的としている。
- 参考スコア(独自算出の注目度): 0.20482269513546458
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fitness applications are commonly used to monitor activities within the gym,
but they often fail to automatically track indoor activities inside the gym.
This study proposes a model that utilizes pose estimation combined with a novel
data augmentation method, i.e., rotation matrix. We aim to enhance the
classification accuracy of activity recognition based on pose estimation data.
Through our experiments, we experiment with different classification algorithms
along with image augmentation approaches. Our findings demonstrate that the SVM
with SGD optimization, using data augmentation with the Rotation Matrix, yields
the most accurate results, achieving a 96% accuracy rate in classifying five
physical activities. Conversely, without implementing the data augmentation
techniques, the baseline accuracy remains at a modest 64%.
- Abstract(参考訳): フィットネスアプリケーションは体育館内の活動を監視するために一般的に使用されるが、体育館内の屋内活動を自動的に追跡できないことが多い。
本研究では,ポーズ推定と新たなデータ拡張手法,すなわち回転行列を併用したモデルを提案する。
ポーズ推定データに基づく行動認識の分類精度を高めることを目的とする。
実験により,画像拡張手法とともに異なる分類アルゴリズムを実験した。
以上の結果から,SGD最適化を用いたSVMは回転行列を用いたデータ拡張により,5つの物理活動の分類において,96%の精度で精度の高い結果が得られることがわかった。
逆に、データ拡張技術を実装することなく、ベースラインの精度はわずかに64%である。
関連論文リスト
- Enhancing Activity Recognition After Stroke: Generative Adversarial Networks for Kinematic Data Augmentation [0.0]
脳卒中リハビリテーションにおけるウェアラブルモニタリングのための機械学習モデルの一般化可能性はしばしば、利用可能なデータの限られたスケールと不均一性によって制限される。
データ拡張は、トレーニングセットに表される変動性を強化するために、実際のデータに計算的に導出されたデータを追加することで、この課題に対処する。
本研究では、CGAN(Conditional Generative Adversarial Networks)を用いて、公開データセットから合成キネマティックデータを生成する。
合成データと実験データの両方でディープラーニングモデルを訓練することにより、タスク分類精度を向上させる:実データのみを訓練したモデルでは66.1%よりもはるかに高い80.0%の精度で合成データを組み込んだモデル。
論文 参考訳(メタデータ) (2024-06-12T15:51:00Z) - Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
HAR(Human Activity Recognition)は、ディープラーニングの普及に大きく貢献していない。
本稿では,センサをベースとしたウェアラブル型HARに対して,ポーズ・ツー・センサ・ネットワークモデルを導入することにより,新たなアプローチを提案する。
コントリビューションには、同時トレーニングの統合、直接ポーズ・ツー・センサ生成、MM-Fitデータセットの包括的な評価が含まれる。
論文 参考訳(メタデータ) (2024-04-25T10:13:18Z) - Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
動作認識のための複数のデータセットをうまく一般化することを目的として,ロバストな特徴表現の課題について検討する。
本稿では、情報損失と投影損失という2つの新しい損失項を設計した、新しいマルチデータセットトレーニングパラダイムであるMultiTrainを提案する。
本研究では,Kineetics-400,Kineetics-700,Moments-in-Time,Activitynet,Some-something-v2の5つの課題データセットに対して,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-09-26T01:30:43Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Transfer Learning for Human Activity Recognition using Representational
Analysis of Neural Networks [0.5898893619901381]
本稿では,人間の行動認識のための伝達学習フレームワークを提案する。
転送学習を使わずに,ベースラインと比較して43%の精度向上と66%のトレーニング時間短縮を実現した。
論文 参考訳(メタデータ) (2020-12-05T01:35:11Z) - Orientation Keypoints for 6D Human Pose Estimation [15.347102634852613]
骨格関節の完全な位置と回転を推定するための新しいアプローチである方向キーポイントを導入する。
モーションキャプチャーシステムは、全骨回転を推定するために一組のポイントマーカーを使用する方法に着想を得て、仮想マーカーを用いて十分な情報を生成する。
回転予測は関節角度の平均誤差を48%改善し、15個の骨回転で93%の精度を達成する。
論文 参考訳(メタデータ) (2020-09-10T15:15:12Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
HAR(Human Activity Recognition)の分野は、監視装置(センサなど)から取得したデータを取得し、分析することに焦点を当てている。
我々は、異なる機械学習(ML)技術を用いて、人間のアクティビティを正確に認識する問題に対処する。
論文 参考訳(メタデータ) (2020-05-15T00:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。