Predictive auxiliary objectives in deep RL mimic learning in the brain
- URL: http://arxiv.org/abs/2310.06089v3
- Date: Tue, 29 Oct 2024 18:12:17 GMT
- Title: Predictive auxiliary objectives in deep RL mimic learning in the brain
- Authors: Ching Fang, Kimberly L Stachenfeld,
- Abstract summary: We study the effects predictive auxiliary objectives have on representation learning across different modules of a deep reinforcement learning system.
We find that predictive objectives improve and stabilize learning particularly in resource-limited architectures.
We draw a connection between the auxiliary predictive model of the RL system and the hippocampus, an area thought to learn a predictive model to support memory-guided behavior.
- Score: 2.6703221234079946
- License:
- Abstract: The ability to predict upcoming events has been hypothesized to comprise a key aspect of natural and machine cognition. This is supported by trends in deep reinforcement learning (RL), where self-supervised auxiliary objectives such as prediction are widely used to support representation learning and improve task performance. Here, we study the effects predictive auxiliary objectives have on representation learning across different modules of an RL system and how these mimic representational changes observed in the brain. We find that predictive objectives improve and stabilize learning particularly in resource-limited architectures, and we identify settings where longer predictive horizons better support representational transfer. Furthermore, we find that representational changes in this RL system bear a striking resemblance to changes in neural activity observed in the brain across various experiments. Specifically, we draw a connection between the auxiliary predictive model of the RL system and hippocampus, an area thought to learn a predictive model to support memory-guided behavior. We also connect the encoder network and the value learning network of the RL system to visual cortex and striatum in the brain, respectively. This work demonstrates how representation learning in deep RL systems can provide an interpretable framework for modeling multi-region interactions in the brain. The deep RL perspective taken here also suggests an additional role of the hippocampus in the brain -- that of an auxiliary learning system that benefits representation learning in other regions.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Objectives Matter: Understanding the Impact of Self-Supervised
Objectives on Vision Transformer Representations [13.437097059358067]
We show that reconstruction-based learning features are significantly dissimilar to joint-embedding based learning features.
We find that joint-embedding features yield better linear probe transfer for classification because the different objectives drive different distributions of information.
arXiv Detail & Related papers (2023-04-25T18:48:23Z) - Can Offline Reinforcement Learning Help Natural Language Understanding? [31.788133426611587]
We consider investigating the potential connection between offline reinforcement learning (RL) and language modeling (LM)
RL and LM are similar in predicting the next states based on the current and previous states, which rely on both local and long-range dependency across states.
Experimental results show that our RL pre-trained models can give close performance compared with the models using the LM training objective.
arXiv Detail & Related papers (2022-09-15T02:55:10Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Divergent representations of ethological visual inputs emerge from
supervised, unsupervised, and reinforcement learning [20.98896935012773]
We compare the representations learned by eight different convolutional neural networks.
We find that the network trained with reinforcement learning differs most from the other networks.
arXiv Detail & Related papers (2021-12-03T17:18:09Z) - Training spiking neural networks using reinforcement learning [0.0]
We propose biologically-plausible alternatives to backpropagation to facilitate the training of spiking neural networks.
We focus on investigating the candidacy of reinforcement learning rules in solving the spatial and temporal credit assignment problems.
We compare and contrast the two approaches by applying them to traditional RL domains such as gridworld, cartpole and mountain car.
arXiv Detail & Related papers (2020-05-12T17:40:36Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.