CoT3DRef: Chain-of-Thoughts Data-Efficient 3D Visual Grounding
- URL: http://arxiv.org/abs/2310.06214v4
- Date: Sat, 05 Oct 2024 18:11:02 GMT
- Title: CoT3DRef: Chain-of-Thoughts Data-Efficient 3D Visual Grounding
- Authors: Eslam Abdelrahman, Mohamed Ayman, Mahmoud Ahmed, Habib Slim, Mohamed Elhoseiny,
- Abstract summary: 3D visual grounding is the ability to localize objects in 3D scenes conditioned by utterances.
Most existing methods devote the referring head to localize the referred object directly, causing failure in complex scenarios.
We formulate the 3D visual grounding problem as a sequence-to-sequence Seq2Seq task by first predicting a chain of anchors and then the final target.
- Score: 23.885017062031217
- License:
- Abstract: 3D visual grounding is the ability to localize objects in 3D scenes conditioned by utterances. Most existing methods devote the referring head to localize the referred object directly, causing failure in complex scenarios. In addition, it does not illustrate how and why the network reaches the final decision. In this paper, we address this question Can we design an interpretable 3D visual grounding framework that has the potential to mimic the human perception system?. To this end, we formulate the 3D visual grounding problem as a sequence-to-sequence Seq2Seq task by first predicting a chain of anchors and then the final target. Interpretability not only improves the overall performance but also helps us identify failure cases. Following the chain of thoughts approach enables us to decompose the referring task into interpretable intermediate steps, boosting the performance and making our framework extremely data-efficient. Moreover, our proposed framework can be easily integrated into any existing architecture. We validate our approach through comprehensive experiments on the Nr3D, Sr3D, and Scanrefer benchmarks and show consistent performance gains compared to existing methods without requiring manually annotated data. Furthermore, our proposed framework, dubbed CoT3DRef, is significantly data-efficient, whereas on the Sr3D dataset, when trained only on 10% of the data, we match the SOTA performance that trained on the entire data. The code is available at https:eslambakr.github.io/cot3dref.github.io/.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - Inverse Neural Rendering for Explainable Multi-Object Tracking [35.072142773300655]
We recast 3D multi-object tracking from RGB cameras as an emphInverse Rendering (IR) problem.
We optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties.
We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data.
arXiv Detail & Related papers (2024-04-18T17:37:53Z) - Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly
Supervised 3D Visual Grounding [58.924180772480504]
3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query.
We propose to leverage weakly supervised annotations to learn the 3D visual grounding model.
We design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner.
arXiv Detail & Related papers (2023-07-18T13:49:49Z) - BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects [89.2314092102403]
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence.
Our method works for arbitrary rigid objects, even when visual texture is largely absent.
arXiv Detail & Related papers (2023-03-24T17:13:49Z) - Attention-Based Depth Distillation with 3D-Aware Positional Encoding for
Monocular 3D Object Detection [10.84784828447741]
ADD is an Attention-based Depth knowledge Distillation framework with 3D-aware positional encoding.
Credit to our teacher design, our framework is seamless, domain-gap free, easily implementable, and is compatible with object-wise ground-truth depth.
We implement our framework on three representative monocular detectors, and we achieve state-of-the-art performance with no additional inference computational cost.
arXiv Detail & Related papers (2022-11-30T06:39:25Z) - Point2Seq: Detecting 3D Objects as Sequences [58.63662049729309]
We present a simple and effective framework, named Point2Seq, for 3D object detection from point clouds.
We view each 3D object as a sequence of words and reformulate the 3D object detection task as decoding words from 3D scenes in an auto-regressive manner.
arXiv Detail & Related papers (2022-03-25T00:20:31Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z) - Semantic Correspondence via 2D-3D-2D Cycle [58.023058561837686]
We propose a new method on predicting semantic correspondences by leveraging it to 3D domain.
We show that our method gives comparative and even superior results on standard semantic benchmarks.
arXiv Detail & Related papers (2020-04-20T05:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.